B. E. CIVIL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - V			
ANALYSIS OF INDETERMINATE STRUCTURES			
urse Code	18 CV 52	CIE Marks	40
Teaching Hours/Week(L:T:P)	(3:2:0)	SEE Marks	60
Credits	04	Exam Hours	03
Course Learning Objectives: This course will enable students to 1. Apply knowledge of mathematics and engineering in calculating slope, deflection, bending moment and shear force using slope deflection, moment distribution method and Kani's method. 2. Identify, formulate and solve problems in structural analysis. 3. Analyze structural system and interpret data. 4. use the techniques, such as stiffness and flexibility methods to solve engineering problems 5. communicate effectively in design of structural elements			
Module-1			
Slope Deflection Method: Introduction, sign convention, development of slope deflection equation, analysis of continuous beams including settlements, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3.			
Module-2			
Moment Distribution Method: Introduction, Definition of terms, Development of method, Analysis of continuous beams with support yielding, Analysis of orthogonal rigid plane frames including sway frames with kinematic indeterminacy ≤ 3.			
Module-3			
Kani's Method: Introduction, Concept, Relationships between bending momentand deformations, Analysis of continuous beams with and without settlements, Analysis of frames with and without sway.			
Module-4			
Matrix Method of Analysis (Flexibility Method) : Introduction, Axes and coordinates, Flexibility matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with static indeterminacy ≤ 3.			
Module-5			
Matrix Method of Analysis (Stiffness Method): Introduction, Stiffness matrix, Analysis of continuous beams and plane trusses using system approach, Analysis of simple orthogonal rigid frames using system approach with kinematic indeterminacy ≤ 3.			
Course Outcomes: After studying this course, students will be able to: 1. Determine the moment in indeterminate beams and frames having variable moment of i subsidence using slope defection method 2. Determine the moment in indeterminate beams and frames of no sway and sway using method. 3. Construct the bending moment diagram for beams and frames by Kani's method. 4. Construct the bending moment diagram for beams and frames using flexibility method 5. Analyze the beams and indeterminate frames by system stiffness method.			
Question paper pattern: - The question paper will have ten full questions carrying equal marks. - Each full question will be for 20 marks. - There will be two full questions (with a maximum of four sub- questions) from each module. - Each full question will have sub- question covering all the topics under a module. - The students will have to answer five full questions, selecting one full question from each module.			
Textbooks:			
1. Hibbeler R C, "Structural Analysis", Pearson Publication 2. L S Negi and R S Jangid, "Structural Analysis", Tata McGraw-Hill Publishing Company Ltd. 3. D S PrakashRao, "Structural Analysis: A Unified Approach", Universities Press 4. K.U. Muthu, H. Narendraetal, "Indeterminate Structural Analysis", IK International Publishing Pvt. Ltd.			
ference Books:			

1. Reddy C S, "Basic Structural Analysis",Tata McGraw-Hill Publishing Company Ltd.
2. Gupta S P, G S Pundit and R Gupta, "Theory of Structures", Vol II, Tata McGraw Hill Publications company Ltd.
3. V N Vazirani and M MRatwani, "Analysis Of Structures", Vol. 2, Khanna Publishers
4. Wang C K, "Intermediate Structural Analysis", McGraw Hill, International Students Edition.
5. S.Rajasekaran and G. Sankarasubramanian, "Computational Structural Mechanics", PHI Learning Pvt. Ltd.

Let $A B$, shown in fig (1), be a member of a rigid structure. After loading it undergoes deformations. Fig (2) shows deformed shape with all displacements θ_{A}, θ_{B} and \triangle. Final moments at end A and B are $m_{A B}$ and MBA.

Fig 1- Original shape of beam.

Fig 2 - Deformed shape of beam.
The development of final moments and deformations are taken as follows.

1) Due to given loadings end moments MFAB \& MFBA develop without any rotations ot ends. These moments are similar to the end moments in a fixed beam ξ_{1} hence ore called as fixed and moments. In fig. 3 , these are shown in as positive

This is similar to the settlement of supports in fixed beams. From analysis of fixed beams we know, the end moments developed are $\frac{6 E I \Delta}{l^{2}}$ as shown in figure 4.

Fig:- End moments due to settlement.
3) Moment M M Comes into play in simply supported beam as shown in fig 5 , to cause end rotations $\theta_{A_{1}} S_{1} \theta_{B 1}$ at $A \mathcal{E}_{A} B$ respectively.
4) Moments $M_{B A}^{\prime}$ Comes into play in singly supported beam shown in fig 6, the end rotations developed are $\theta_{A 2}$ and $\theta_{B 2}$.

Fig 5 - End rotations due to $M_{A B}^{\prime}$

Fig 6. - End rotations due to $M_{B A}^{\prime}$.
Moment $M_{A B}^{\prime}$ \& $M_{B A}^{\prime}$ give final rotations $O_{A}\left\{O_{B}\right.$ to the beam $A B$. To find the rotations due to applied moment ' M ' in a beam without end rotation (Fig 7), Conjugate beam mettrad may be used (Fig 8).

Fig. SSB subjected to end aments.

Fig 8:- Conjugate Beam
Hence refering $f_{f_{n}}^{(5)}(6) s_{1}(8)$,

$$
\begin{array}{ll}
\theta_{A 1}=\frac{M_{A B}^{\prime} L}{3 E I} & \theta_{B 1}=\frac{M_{A B L}^{\prime}}{6 E I} \\
\theta_{A_{2}}=\frac{M_{B A}^{\prime} L}{6 E I} & \theta_{B 2}=\frac{M_{B A L}^{\prime}}{3 E I .}
\end{array}
$$

$$
\begin{aligned}
\theta_{A} & =\theta_{A 1}-\theta_{A 2}=\left(\frac{M_{A B}^{\prime} L}{3 E I}\right)-\left(\frac{M_{B A L}^{\prime} L}{6 E I}\right) \\
\theta_{B} & =\theta_{B 2}-\theta_{B 1}=\left(\frac{M_{B A L}^{\prime}}{3 E I}\right)-\left(\frac{M_{A B}^{\prime} \cdot L}{6 E I}\right) \\
\therefore 2 \theta_{A}+\theta_{B} & =\frac{2 M_{A B}^{\prime} \cdot L}{3 E I}-\frac{2 M_{B A / L}^{\prime}}{6 F_{I}}+\frac{M_{B A A}^{\prime} \cdot L}{3 E I}-\frac{M_{A B}^{\prime} L}{6 E I \cdot} \\
& =\frac{M_{A B}^{\prime} L}{E I}\left(\frac{2}{3}-\frac{1}{6}\right) \\
2 \theta_{A}+\theta_{B} & =\frac{1}{2} \cdot \frac{M_{A B}^{\prime} L}{E I} \\
M_{A B}^{\prime} & =\frac{2 E I}{L}\left[2 \theta_{A}+\theta_{B}\right) .
\end{aligned}
$$

Why $\quad M_{B A}^{\prime}=\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}\right)$

Final moments shown in fig (2) are the sum of the moments shown in four stages, shown from fig 3 to 6 .

$$
\begin{align*}
\therefore M_{A B} & =M_{F A B}-\frac{6 E I \Delta}{L^{2}}+M_{A B}^{\prime} . \\
& =M_{F A B}-\frac{6 E I \Delta}{L^{2}}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}\right) \\
M_{A B} & =M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 \Delta}{L}\right) \tag{1}\\
& M_{B A}=M_{F B A}-\frac{6 E I \Delta}{L^{2}}+M_{B A}^{\prime} . \\
M_{B A} & =M_{F B A}+\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}-\frac{3 \Delta}{L}\right) \tag{2}
\end{align*}
$$

Fixed End Moments. (HEM).

$$
M_{\text {FAB }}=-\frac{W l^{2}}{12}
$$

$$
M_{F B A}=+\frac{\omega h^{2}}{12}
$$

$$
M_{F A B}=\frac{-W L}{8}
$$

$$
m_{F B A}=+\frac{W L}{8}
$$

$$
M_{F A B}=-\frac{W a b^{2}}{l^{2}}
$$

$$
M_{F B A}=+\frac{W a^{2} b}{l^{2}}
$$

$$
M_{F A B}=-\frac{W l^{2}}{30}
$$

$$
M_{F B A}=\frac{W l^{2}}{20}
$$

$$
M_{F A B}=-\frac{W l^{2}}{20}
$$

$M_{F A R}=-5 l^{2}$

$$
\begin{aligned}
& M_{F A B}=M_{F B A} \pm \frac{M}{4} \\
& A+A \\
& M_{F A B}=M_{F B A}-\frac{M}{4}
\end{aligned}
$$

1) Analyse the $C B$ shown in figure, draw Bnap Eelastic Curn

Sel:
(3) FEM.

$$
\begin{aligned}
& M_{F A D}=\frac{-W a b^{2}}{l^{2}}=\frac{-60 \times 4 \times 2^{2}}{6^{2}}=-26.67 \mathrm{kN} \mathrm{~m} \\
& M_{F B A}=\frac{W a^{2} b}{t^{2}}=\frac{+60 \times 4^{2} \times 2}{6^{2}}=53.33 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=\frac{-W l^{2}}{12}=\frac{-30 \times 6^{2}}{12}=-90 \mathrm{kN-m} \\
& M_{F C B}=+\frac{W l^{2}}{12}=\frac{30 \times 6^{2}}{12}=90 \mathrm{kN} \mathrm{~mm}
\end{aligned}
$$

(2) S-D Equis

$$
\begin{align*}
M_{A B}= & M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 A}{A}\right) \\
& \theta_{A}=0 \quad(\text { fixed end) } A=0 . \\
M_{A B}= & -26.67+\frac{2 E I}{6}\left(\theta_{B}\right) . \\
= & -26.67+\frac{E I \theta_{B}}{3} \rightarrow(1) \tag{1}\\
M_{B A}= & M_{F B A}+\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}-3 A\right. \\
= & 53.33+\frac{2 E I}{6}\left(2 \theta_{B}\right) \\
= & 53.33+\frac{2 E I \theta_{B}}{3} \rightarrow(2) \\
M_{B C}= & M_{F B C}+\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{C}-\frac{3 A}{1}\right) \\
= & -90+\frac{2 E I}{6}\left(2 \theta_{B}+\theta_{C}\right) \\
= & -90+\frac{2 E I \theta_{B}}{3}+\frac{1}{3} E I \theta_{C}
\end{align*}
$$

$$
\begin{align*}
M_{C B} & =M_{F C B}+\frac{\alpha L}{L}\left(2 \theta_{C}+\theta_{B}-\frac{2 E I}{6}\left(2 \theta_{C}+\theta_{B}\right)\right. \\
& =90+\frac{2}{3} E I \theta_{C}+\frac{1}{3} \theta_{B} \\
& =90+\frac{2}{3} \tag{4}
\end{align*}
$$

(3) Equilibrium Equ's.

Joint $B \rightarrow \Sigma \Sigma M_{B}=0$

$$
\begin{gather*}
M_{B A}+M_{B C}=0 . \\
53.33+\frac{2 E I \theta_{B}}{3}-90+\frac{2 E I \theta_{B}}{3}+\frac{1}{3} E I \theta_{C}=0 \\
1.32 E I \theta_{B}+0.33 E I \theta_{C}=36.67 \rightarrow(5
\end{gather*}
$$

Jointc $\rightarrow E M_{C}=0$.

$$
\begin{gather*}
M_{C B}=0 \\
0.33 E I \theta_{B}+0.66 E I \theta_{C}=-90 \tag{6}
\end{gather*}
$$

solving equs (5) \& (6)

$$
E \Phi \theta_{B}=70 \quad E D \theta_{C}=-170
$$

(4) End Moments.

Suss ER θ_{B} \& EI θ_{C} in eques (1), (2), (3) $\&$ (4)

$$
\begin{array}{ll}
\text { Suss } E R \theta_{B} E E A O C & M_{B C}=-10014 \mathrm{Nm} \\
M_{A B}=-3.33 \mathrm{kN} m & \\
M_{B A}=100 \mathrm{kNrm} & M_{C B}=0
\end{array}
$$

$B M D$
span AB.

$$
\begin{aligned}
\frac{\text { wab }}{d} & =\frac{60 \times 4 \times 2}{6} \\
& =80 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Spoon BC.

$$
\frac{w l^{2}}{8}=\frac{30 \times 6^{2}}{8}
$$

curve

Sol-
(1) FERA.

$$
\begin{aligned}
& M_{A B}=\frac{-w l^{2}}{12}=\frac{-4 \times 3^{2}}{12}=-3 \mathrm{kN-m} \\
& M_{B A}=\frac{4 \times 3^{2}}{12}=3 \mathrm{kNfm} \\
& M_{B C}=\frac{-w l^{2}}{12}=\frac{-5 \times 4^{2}}{12}=-6.67 \mathrm{kN-m} \\
& M_{C B}=\frac{5 \times 4^{2}}{12}=6.67 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(2) $S \rightarrow$ Equ's

$$
\begin{align*}
& \xrightarrow[M_{A B}]{ }=M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 \Delta}{L}\right) \\
& \theta_{A}=0, \Delta=0 . \\
& M_{A B}=-3+\frac{2 E I}{3}\left(\theta_{B}\right) \\
& M_{A B}=-3+0.66 E I \theta_{B} \longrightarrow(1) \\
& M_{B A}=3+\frac{2 E I}{3}\left(2 \theta_{B}+\theta_{A}-\frac{3 / A}{3}\right) \\
&=3+1.33 E I \theta_{B} \longrightarrow(2) \\
& M_{B C}=-6.67+\frac{2 E I}{4}\left(2 \theta_{B}+\phi_{C}-\frac{3 A}{L}\right) \\
& \theta_{C}=0 . \\
&=-6.67+E I \theta_{B} \longrightarrow(3) \tag{3}\\
& M_{C B}=6.67+\frac{2 E I}{4}\left(2 / \theta_{C}+\theta_{B}\right. \\
&\left.=6.67+\frac{3 / A}{L}\right) \tag{4}
\end{align*}
$$

DID for troumse 40.
(1).

Reactions.

$$
\begin{aligned}
& \sum M_{B}=0 \quad(L+S) \\
& \left(R_{A} \times 6\right)-33.33-(60 \times 2)+100=0 . \\
& R_{A}=3.83 \mathrm{kN} \\
& \Sigma M B=0 \text { (RHS) } \\
& \left(R_{c} \times 6\right)-0-(30 \times 6 \times 6 / 2)+100=0 . \\
& R_{c}=73.33 \mathrm{kN} \\
& -\sum M_{A}=0(R H S) \\
& \left(R_{C} \times 12\right)-0-(30 \times 6 \times 9)+100-100+\left(R_{B} \times 6\right)-(60 \times 4)+\frac{3.33}{33} 33=0 . \\
& R_{B}=162.78 \mathrm{kN}
\end{aligned}
$$

$$
\begin{align*}
& \Sigma V=0 \\
& R_{A}+R_{B}+R_{C}=60+(30 \times 6)=240 \mathrm{kN} . \tag{06}\\
& R_{B}=162.78
\end{align*}
$$

SFD.

$$
\begin{align*}
& \text { Reactions } \\
& \sum M_{B}=0(L H S) \\
& \left(R_{A} \times 3\right)-1.96-\left(4 \times 3 \times \frac{3}{2}\right)+5.1=0 . \\
& \sum R_{A}=4.95 \mathrm{kN} \\
& \left(R_{C} \times 4\right)-7.457-\left(5 \times 4 \times \frac{4}{2}\right)+5.1=0 . \\
& \quad R_{C}=10.58 \mathrm{kN} \\
& \sum M_{A}=0(R+H S) \\
& \left(R_{C} \times 7\right)-7.457-(5 \times 4 \times 5)+\left(R_{B} \times 3\right)+5.1-5.1-\left(4 \times 3 \times \frac{3}{2}\right)+1.96=0 \\
& \quad R_{B}=16.47 \mathrm{kN}
\end{align*}
$$

$$
\Sigma v=0 .
$$

$$
=0
$$

$$
R_{B}=16.47 . \mathrm{kN}
$$

$\Leftrightarrow n q^{u-1} n q^{u n}$.
At Joint B.

$$
\begin{aligned}
& S M_{B}=0 . \\
& M_{B A}+M_{B C}=0 \\
& 3+1.33 E I \theta_{B}-6.67+E I \theta_{B}=0 . \\
& 2.33 E I \theta_{B}=3.67 \\
& E I \theta_{B}=1.575
\end{aligned}
$$

(4) End Momants.

Sulse EIO B in equy (1), (2), (3) \& (4)

$$
\begin{aligned}
& M_{A B}=-3+0.66(1.575)=-1.96 \mathrm{kN} \mathrm{~m} \\
& M_{B A}=3+1.33(1.575)=5.10 \mathrm{kN-m} \\
& M_{B C}=-6.67+1.575=-5.10 \mathrm{kN}-\mathrm{m} \\
& M_{C B}=6.67+0.5(1.575)=7.457 \mathrm{kN-m}
\end{aligned}
$$

$B M D$.
Spein AB.
Span BC

$$
=\frac{\omega l^{2}}{8}=\frac{4 \times 3^{2}}{8}=4.5 \mathrm{kN}-\mathrm{m} \quad \frac{\omega \mathrm{l}^{2}}{8}=\frac{5 \times 4^{2}}{8}=10 \mathrm{kN}-\mathrm{m}
$$

Solt
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=-\frac{W a b^{2}}{l^{2}}=\frac{-40 \times 3 \times 2^{2}}{(5)^{2}}=-19.2 \mathrm{kN}-\mathrm{m} \\
& M_{F B A}=+\frac{W a^{2} b}{l^{2}}=\frac{40 \times 3^{2} \times 2}{5^{2}}=28.8 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=\frac{-W l^{2}}{1^{2}}=\frac{-30 \times 5^{2}}{12}=-62.5 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=+\frac{W l^{2}}{12}=62.5 \mathrm{kN}-\mathrm{m} \\
& M_{F C D}=-\frac{W l}{8}=\frac{-60 \times 4}{8}=-30 \mathrm{kNNm} \\
& M_{F D C}=+\frac{W l}{8}=30 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(2) $S-D$ Equ's.

$$
\begin{align*}
M_{A B} & =M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 A}{L}\right) \\
\theta_{A} & =0, \theta_{D}=0 ., \Delta=0 . \\
M_{A B} & =-19.2+\frac{2 E I}{5}\left(2 \phi_{A}^{0}+\theta_{B}-\frac{3 / A}{5}\right) \\
& =-19.2+0.4 E I \theta_{B}-(1) \tag{1}\\
M_{B A} & =28.8+\frac{2 E I}{5}\left(2 \theta_{B}\right) \\
& =28.8+0.8 E I \theta_{B} \tag{2}\\
M_{B C} & =-62.5+\frac{2 E I}{5}\left(2 \theta_{B}+\theta_{C}\right) \\
& =-62.5+0.8 E I \theta_{B}+0.4 E I \theta_{C} \tag{3}\\
M_{C B} & =62.5+2 E I 5\left(2 \theta_{C}+\theta_{B}\right)
\end{align*}
$$

$$
\begin{align*}
& =-30+E I \theta_{C} \\
M_{D C} & =30+\frac{2 E I}{4}\left(\theta_{C}\right) \tag{s}\\
& =30+0.5 E \pm \theta_{C}
\end{align*}
$$

(3) Equm Equ's.

At Support B,

$$
\begin{gather*}
M_{B A}+M_{B C}=0 . \\
28.8+0.8 E I \theta_{D}-62.5+0.8 E I \theta_{B}+0.4 E I \theta_{C}=0 . \\
1.6 E I \theta_{B}+0.4 E I \theta_{C}=33.7 \tag{7}
\end{gather*}
$$

At Support C,

$$
\begin{gather*}
M_{C B}+M M_{C D}=0 \\
62.5+0.4 E I O_{B}+0.8 E I \theta_{C}-30+E I \theta_{C}=0 \\
0.4 E I \theta_{B}+1.8 E I \theta_{C}=-32.5 \tag{8}
\end{gather*}
$$

Solving equis (f) $S_{1}(8)$,

$$
E I \theta_{B}=27.08 . \quad E I \theta_{C}=-24.07 .
$$

(4) End Moments.

Subs EIOB $F E I \theta_{C}$ in equis (1) to (6).

$$
\begin{aligned}
& M_{A B}=-8.36 \mathrm{kN} \mathrm{~km} \\
& M_{C B}=54.07 \mathrm{kN} / \mathrm{m} \\
& M_{B A}=50.46 \mathrm{kwim} \\
& M_{C D}=-54.07 \mathrm{kN}-\mathrm{m} \\
& M_{B C}=-50.46 \mathrm{kN}-\mathrm{m} \\
& M_{D C}=17.965 \mathrm{kNm} \\
& \text { (} \\
& \frac{\text { Wab }}{l}=48 \mathrm{kN}-\mathrm{m} \\
& \frac{\mathrm{wl}^{2}}{8}=93.75 \mathrm{kNm} \\
& \frac{\omega l}{4}=60 \mathrm{kNth}
\end{aligned}
$$

Solt
(7) FEM

$$
\begin{aligned}
& \text { (7) FEM } \\
& M_{F A B}=-\frac{W a b^{2}}{l^{2}}=-\left[\frac{40 \times 2 \times 4^{2}}{6^{2}}+\frac{40 \times 4 \times 2^{2}}{6^{2}}\right]=-53.33 \mathrm{kNm} \\
& M_{F B A}=+\frac{W a^{2} b}{d^{2}}=\left[\frac{40 \times 2^{2} \times 4^{2}}{6^{2}}+\frac{40 \times 4^{2} \times 2}{6^{2}}\right]=53.33 \mathrm{kNm} \\
& M_{F B C}=-\frac{W l^{2}}{12}-\frac{W a b^{2}}{l^{2}}=-\frac{40 \times 2^{2} \times 4^{2}}{6^{2}}-\frac{20 \times 6^{2}}{12}=-104.44 \mathrm{kN-m} \\
& M_{F C B}=\frac{W l^{2}}{12}+\frac{W a^{2} b}{t^{2}}=\frac{20 \times 6^{2}}{12}+\frac{50 \times 2^{2} \times 4}{(6)^{2}}=82.22 \mathrm{kNam} \\
& M_{F C D}=-\frac{W l}{8}=\frac{-80 \times 4}{8}=-40 \mathrm{kN-m} \\
& M_{F D C}=\frac{W l}{8}=\frac{80 \times 4}{8}=40 \mathrm{kN}-m
\end{aligned}
$$

(2) $S \cdot D \cdot$ Equis.

$$
\begin{align*}
\theta_{D} & =0, \quad \Delta=0 \\
M_{A B} & =M_{F A B}+\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}-\frac{3 \Delta}{L}\right) \\
& =-53.33+\frac{2(1.5 E I)}{6}\left(2 \theta_{A}+\theta_{B}\right) \\
& =-53.33+E \pm \theta_{A}+0.5 E I \theta_{B} \tag{i}\\
M_{B A} & =53.33+\frac{2(1.5 E I)}{6}\left(2 \theta_{B}+\theta_{A}\right) \\
& =53.33+E I \theta_{B}+0.5 E I \theta_{A} \tag{2}\\
M_{B C} & =-104.44+\frac{2(2 E I)}{6}\left(2 \theta_{B}+\theta_{C}\right) \\
& =-104.44+1.33 E I \theta_{B}+0.67 E I \theta_{C} \tag{3}\\
M_{C B} & =82.22+\frac{2(2 E I)}{6}\left(2 \theta_{C}+\theta_{B}\right)
\end{align*}
$$

$$
\begin{align*}
& =-40+E I \theta_{C} \tag{5}\\
M_{D C} & =40+\frac{2 E I}{4}\left(2 \phi_{D}+\theta_{C}\right) \\
& =40+0.5 E I \theta_{C} \tag{6}
\end{align*}
$$

(3) Equm Condifion.

At joint A,

$$
\begin{gather*}
M_{A B}=0 \\
E I O_{A}+0.5 E \perp \theta_{B}=53.33 \tag{7}
\end{gather*}
$$

At joint B,

$$
\begin{gather*}
M_{B A}+M_{B C}=0 . \\
53.33+E I \theta_{A}+S E I \theta_{B B}-104.44+1.33 E I \theta_{B}+0.67 E I \theta_{C}=0 \\
0.5 E I \theta_{A}+2.33 E I \theta_{B}+0.67 E I \theta_{C}=51.11 \text { (8) } \tag{8}
\end{gather*}
$$

At joint C,

$$
\begin{gather*}
M_{C B}+M_{C D}=0 \\
82.22+1.33 E I \theta_{C}+0.67 E I \theta_{B}-40+E I \theta_{C}=0 . \\
0.67 E I \theta_{B}+2.33 E I \theta_{C}=-42.22 \tag{9}
\end{gather*}
$$

Golving equ' (7), (8) and (9).

$$
E \pm \theta_{A}=43.64 \quad E I \theta_{B}=19.38 . \quad E I \theta_{C}=-23.69 .
$$

(4) Final roments.
subs EIO $E I \theta_{B}$ \& EIO in equis (1) to (6).

$$
\begin{array}{ll}
M_{A B}=0 . & M_{C B}=63.69 \mathrm{kN-m} \\
M_{B A}=94.53 \mathrm{kN-m} & M_{C D}=-63.69 \mathrm{kN-m} \\
M_{B C}=-94.53 \mathrm{kN-m} & M_{D C}=28.15 \mathrm{kN-m}
\end{array}
$$

BMD for Span ISC

$A B$

$$
W a=40 \times 2=80 \mathrm{kN}-\mathrm{m}
$$

CD

$$
\frac{W 1}{4}=\frac{80 \times 4}{4}=80 \mathrm{kN-m}
$$

Reactions

$$
\begin{gathered}
\sum M_{B}=0(L H S) \\
\left(R_{A} \times 5\right)-8.36-(40 \times 2)+50.46=0 . \\
R_{A}=7.58 \mathrm{kN} \\
\Sigma M_{C}=0(R H S) \\
\left(R_{D} \times 4\right)-17.965-(60 \times 2)+54.07=0 . \\
R_{D}=20.97 \mathrm{kN} \\
\sum M_{C}=0(L H S) . \\
\left(R_{A} \times 10\right)-8.36-(40 \times 7)-50.46+50.46-\left(30 \times 5 \times \frac{5}{2}\right)+54.07 \\
+R_{B} \times 5=0 . \\
\sum M_{B}=0(R H S)=0.7 \mathrm{kN}+50.46=0 . \\
\left.\left(R_{D} \times 9\right)-17.965-(60 \times 7)+54.07-54.07-\left(30 \times 5 \times \frac{5}{2}\right)+R_{C} \times 5\right) \\
+R_{C}=114.75 \mathrm{kN} .
\end{gathered}
$$

Reactions

$$
\begin{align*}
& \Sigma V=0 . \\
& R_{A}+R_{B}+R_{C}+R_{D}=40+40+50+(20 \times 6)+80=330 . \tag{1}\\
& \sum M_{B}=(\text { LHS }) \\
& R_{A} \times 6-0-(40 \times 4)-(40 \times 2)+94.53=0 . \\
& R_{A}=24.245 \mathrm{kN} \\
& \Sigma M_{C}= 0(\text { LHS }) \\
&(24.245 \times 12)-0-(40 \times 10)-(40 \times 8)-94.53+94.53+\left(R_{B} \times 6\right) \\
&-(50 \times 4)-\left(20 \times 6 \times \frac{6}{2}\right)+63.69=0 \\
& R_{B}=154.22 \mathrm{kN}
\end{align*}
$$

$$
\begin{aligned}
& \sum M_{C}=0(R H S) \\
& \left(R_{D} \times 4\right)-28.15-(80 \times 2)+63.69=0 \\
& \quad R_{D}=31.115 \mathrm{kN}
\end{aligned}
$$

(1) \Rightarrow

Solt
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W a b^{2}}{l^{2}}=\frac{-70 \times 4 \times 2^{2}}{6^{2}}=-31.11 \mathrm{kN-m} \\
& M_{F B A}=\frac{W a^{2} b}{l^{2}}=\frac{70 \times 4^{2} \times 2}{6^{2}}=62.22 \mathrm{kN-m} \\
& M_{F B C}=-\frac{W l^{2}}{12}=-\frac{20 \times 4^{2}}{12}=-26.67 \mathrm{kN-m} \\
& M_{F C B}=\frac{W l^{2}}{12}=26.67 \mathrm{kN-m}
\end{aligned}
$$

$$
M_{C D}=-(10 \times 1+20 \times 1 \times 1 / 2)
$$

$=-20 \mathrm{kN}-\mathrm{m}$. (-ve sign for resisfing moment.).
(2) S. Equis.

$$
\begin{align*}
& \theta_{A}=0, \quad \Delta=0 \\
& M_{A B}=-31.11+\frac{2 E I}{6}\left(\theta_{B}\right)=-31.11+0.33 E I \theta_{B}-(1) \tag{1}\\
& M_{B A}=62.22+\frac{2 E I}{6}\left(2 \theta_{B}\right)=62.22+0.66 E I \theta_{B} \tag{2}\\
& M_{B C}=-26.67+\frac{2 E I}{4}\left(2 \theta_{B}+\theta_{C}\right)=-26.67+E I \theta_{B}+0.5 E I \theta_{C} \tag{3}\\
& M_{C B}=26.67+\frac{2 E I}{4}\left(2 \theta_{C}+\theta_{B}\right)=26.67+0.5 E I \theta_{B}+E I \theta_{C} \tag{4}
\end{align*}
$$

There is No $S \cdot D$ equ for Overhanging portion $C D$.
(3) Equm condition.

At joint $B, \quad M_{B A}+M_{B C}=0$

$$
\begin{align*}
& 62.22+0.66 E I \theta_{B}-26.67+E I \theta_{B}+0.5 E I \theta_{C}=0, \\
& 1.66 E I \theta_{B}+0.5 E I \theta_{C}=-35.55
\end{align*}
$$

At joint $C, \quad M_{C B}+M_{C D}=0$.
sotving, equis (s) I_{1} (6)

$$
E I \theta_{B}=-22.84
$$

$$
E \delta \theta_{c}=4.75
$$

(4) Final Moments.

Sulss, EIV $\&$ EIO in equy (1) to (4).

$$
\begin{aligned}
& M_{A B}=0.33(-22.84)-31.11=-38.64 \mathrm{kNrm} \\
& M_{B A}=0.66(-22.84)+62.22=47.14 \mathrm{kNrm} \\
& M_{B C}=(-22.84)+0.5(4.75)-26.67=-47.14 \mathrm{kNrm} \\
& M_{C B}=4.75+0.5(-22.84)+26.67=20 \mathrm{kNrm} \\
& M_{C D}=-20 \mathrm{kN-m} .
\end{aligned}
$$

BMD.

$$
\frac{W a b}{l}=\frac{70 \times 4 \times 2}{6}=93.33 \mathrm{kN-m} \quad \frac{w l^{2}}{8}=\frac{20 \times 4^{2}}{8}=40 \mathrm{kN} \mathrm{~cm}
$$

$E C$
(6) by 10 mm . Given $E I=4000 \mathrm{krm}^{2}$. Draw $B M D E E C$

solv

(1) FEM.

$$
\begin{aligned}
& \text { EEM. } \\
& \text { MFAB }=\frac{-20 \times 8^{2}}{12}=-106.67 \mathrm{kNMm} \\
& M F B A=\frac{20 \times 8^{2}}{12}=106.67 \mathrm{kN} \mathrm{~mm} \\
& M F B C=\frac{-60 \times 4}{8}=\frac{60 \times \mathrm{kNam}}{8}=30 \mathrm{kNrm} \\
& M F C B=
\end{aligned}
$$

(2) $S-D$ Equ's. , $\theta_{A}=0, \Delta=+0.01 \mathrm{~m}$.

$$
\begin{align*}
& S-D E q u s, \quad \theta_{A}=0, \Delta=+0.01 \mathrm{~m} . \\
& M_{A B}=-106.67+\frac{2(4000 \times 2)}{8}\left(\theta_{B}-\frac{3(0.01)}{8}\right) \\
&=-106.67+2000 \theta_{B}-7.5 \\
&=2000 \theta_{B}-114.17-\frac{2(2 \times 4000)}{8}\left(2 \theta_{B}-\frac{3(0.01)}{8}\right) \\
& M_{B A}\left.=106.67+\frac{3(2)}{4}\right) \\
&=106.67+4000 \theta_{B}-7.5 \tag{2}\\
&=4000 \theta_{B}+99.17 \\
&=-30+\frac{3(4000)}{4}\left(20 \theta_{B}+\theta_{C}-\frac{3(-0.01)}{4}\right) \\
& M_{B C}=-30+4000 \theta_{B}+2000 \theta_{C}+15 \\
&=4000 \theta_{B}+2000 \theta_{C}-25 \tag{3}
\end{align*}
$$

$$
\begin{align*}
& =30+2000 \theta_{B}+4000 \theta_{c}+15 . \\
& =2000 \theta_{B}+4000 \theta_{c}+45 \tag{4}
\end{align*}
$$

(3) Equm Conditions.

At joint B, $\quad M_{B A}+M_{B C}=0$.

$$
\begin{gather*}
4000 \theta_{B}+99.17+4000 \theta_{B}+2000 \theta_{c}-15=0 . \\
8000 \theta_{B}+2000 \theta_{c}=-84.17 \tag{5}
\end{gather*}
$$

At joint $C, \quad M_{C B}=0$.

$$
2000 \theta_{B}+4000 \theta_{c}=-45
$$

Solving equis (5) ε_{0} (6)

$$
\theta_{B}=-8.81 \times 10^{-3} \text { Rabians } \theta_{C}=-6.845 \times 10^{-3} \text { Radians }
$$

(4) Final Moments.

Subs O_{B} \&e in equ's (1) to (4).

$$
\begin{array}{ll}
M_{A B}=-131.79 \mathrm{kN-m} & m_{B C}=-63.93 \mathrm{kN-m} \\
M_{B A}=63.93 \mathrm{kN}-\mathrm{m} & M_{C B}=0 .
\end{array}
$$

BMD.

EC

BM.
$A B$

$$
\begin{aligned}
\frac{W l^{2}}{8} & =\frac{20 \times 8^{2}}{8} \\
& =160 \mathrm{kN-m}
\end{aligned}
$$

$B C$

$$
\begin{aligned}
& \frac{\mathrm{Wl}}{4}=\frac{60 \times 4}{4} \\
& =60 \mathrm{krmm}
\end{aligned}
$$

(2)
(H) Hnalyse whe beam kowno

Sollr
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=-\frac{W l^{2}}{12}=\frac{-25 \times 6^{2}}{12}=-75 \mathrm{kwrm} \\
& M_{F B A}=75 \mathrm{kNm} \\
& M_{F B C}=+\frac{M b(3 a-l)}{l^{2}}=\frac{50 \times 3(3(2)-5)}{5^{2}}=6 \mathrm{kwhm} \\
& M_{F C B}=\frac{M a(3 b-l)}{l^{2}}=\frac{50 \times 2[3(3)-5]}{5^{2}}=16 \mathrm{kNmm} \\
& M F C D=\frac{-W l^{2}}{30}=\frac{-75 \times 4^{2}}{30}=-40 \mathrm{kw-m} \\
& M_{F D C}=+\frac{W l^{2}}{20}=\frac{75 \times 4^{2}}{20}=60 \mathrm{kw-m}
\end{aligned}
$$

(2) S-D Equ's.

$$
\begin{align*}
& \theta_{A}=\theta_{D}=0 . \quad \Delta=0 \text {. } \\
& M_{A B}=-75+\frac{2 E I}{6} \cdot\left(\theta_{B}\right)=0.33 E T \theta_{B}-75 . \tag{1}\\
& M_{B A}=75+\frac{2 E I}{6}\left(2 \theta_{B}\right)=0.66 E T \theta_{B}+75 \tag{2}\\
& M_{B C}=6+\frac{2 E I}{5}\left(2 \theta_{B}+\theta_{C}\right)=0.8 E I \theta_{B}+0.4 E I \theta_{C}+6 \\
& M_{C B}=16+\frac{2 E I}{5}\left(2 \theta_{C}+\theta_{D}\right)=0.4 E I \theta_{B}+0.8 E I \theta_{C}+16 \tag{4}\\
& M_{C D}=-40+\frac{2 E I}{4}\left(2 \theta_{C}\right)=E T \theta_{C}-40 \\
& M_{D C}=60+\frac{2 E I}{4}\left(\theta_{C}\right)=0.5 E I \theta_{C}+60
\end{align*}
$$

(3) Equm Conditions.

At foint $B, \quad M_{B A}+m_{B C}=0$

$$
0.66 E I \theta_{B}+75+0.8 E I \theta_{B}+0.4 E I \theta_{C}+6=0
$$

$$
\begin{gather*}
0.4 E I \theta_{3}+0.8 E I \theta_{C}+16+E I \theta_{C}-40=0 . \\
0.4 E I \theta_{B}+1.8 E I \theta_{C}=24 \tag{8}
\end{gather*}
$$

Solving equ's (7) s. (8)

$$
E I \theta_{B}=-62.96 . \quad E I \theta_{C}=27.32 .
$$

(4) Final Moments.

Subs the values of $E I \theta_{B}$ s. $E I \theta_{C}$ in equis (1) ta (6).

$$
\begin{array}{ll}
\text { Subs } & M_{C B}=12.67 \mathrm{kNim} \\
M_{A B}=-95.77 \mathrm{kN-m} & m_{C D}=-12.67 \mathrm{kN-m} \\
M_{B C}=-33.44 \mathrm{kN-m} & m_{D C}=73.66 \mathrm{kN-m}
\end{array}
$$

*) Analyze the beam shown in figure. The support H. yields (o) rotates by $1 / 250$ radians. Take $E I=5000 \mathrm{kN}-\mathrm{m}^{2}$

Solis

(1) REM

$$
\begin{aligned}
& M_{F A B}=-\frac{W l^{2}}{12}=-62.5 \mathrm{kNm} \\
& M_{F B A}=\frac{W l^{2}}{12}=62.5 \mathrm{kN}-m \\
& M_{F B C}=-\frac{W a b^{2}}{l^{2}}=-\frac{50 \times 2 \times 5^{2}}{7^{2}}-\frac{50 \times 5 \times 2^{2}}{7^{2}}=-71.142 \mathrm{NNM} \\
& M_{F C B}=-\frac{W a^{2} b}{l^{2}}=+\frac{50 \times 2^{2} \times 5^{2}}{7^{2}}+\frac{50 \times 5^{2} \times 2}{7^{2}}=71.42 \mathrm{kNm}
\end{aligned}
$$

(2) $S-D$ Eqn's

$$
\begin{align*}
& \theta_{A}=1 / 250, \delta=0 . \\
& M_{A B}=-62.5+\frac{2(5000)}{5}\left[(2 \times 1 / 250)+\theta_{B}\right] \\
&= 2000 \theta_{B}-46.5-\frac{2(5000)}{5}\left[\left(2 \times \theta_{B}\right)+1 / 250\right] \tag{1}\\
& M_{B A}= 62.5+\frac{2}{}=4000 \theta_{B}+70.5 \\
&=2857.14 \theta_{B}+1428.5 \theta_{C}-71.42
\end{align*}
$$

$$
\begin{equation*}
=1428.5 v_{3}+2857.14 v_{c}+71.42 \tag{4}
\end{equation*}
$$

(3) J.E.E.

Joint $B, \quad M_{B A}+m_{B C}=0$.

$$
\begin{gather*}
4000 \theta_{B}+70.5+2857.14 \theta_{B}+1428.5 \theta_{c}-71.42=0 . \\
6857.14 \theta_{B}+1428.5 \theta_{C}=0.92 \tag{I}
\end{gather*}
$$

Joint $C, \quad m_{C B}=0$.

$$
\begin{equation*}
1428.50_{13}+2857.14 \theta_{2}=-71.42 \tag{II}
\end{equation*}
$$

Solving equis (I) $\&$ (II)

$$
\begin{aligned}
& \theta_{B}=5.962 \times 10^{-3} \\
& \theta_{C}=-0.0279
\end{aligned}
$$

(4) Final Moments.

$$
\begin{aligned}
& M_{A B}=-34.576 \mathrm{kmm} \\
& M_{B A}=94.34 \mathrm{kNm} \\
& M_{B C}=-94.3 \mathrm{kNm} \\
& M_{C B}=0 .
\end{aligned}
$$

$B M D$.

Ec.

SFD

$$
\begin{aligned}
& \sum m_{B}=0(\text { LHS }) \\
& \left(R_{A} \times 5\right)-34.57+94.34-\left(30 \times 5 \times \frac{5}{2}\right)=0 . \\
& R_{A}=63.04 \mathrm{kN} . \\
& \Sigma M_{B}=0(R . H S) \\
& \left(-R_{C} \times 7\right)+(50 \times 5)+(50 \times 2)-94.34=0 . \\
& R_{C}=36.52 \mathrm{kN} .
\end{aligned}
$$

$$
\Sigma v=0 .
$$

$$
\begin{aligned}
& =0 . \\
& R_{A}+R_{B}+R_{C}=(30 \times 5)+(50)+(50)
\end{aligned}
$$

$$
R_{B}=180.44 \mathrm{kN} .
$$

SFD.

SFD

$$
\begin{align*}
& \Sigma V=0 . \\
& R_{A}+R_{B}+R_{C}=70+(20 \times 5)+10=180-(1) \tag{1}\\
& \Sigma M_{B}=0 .(L H S) \\
& \left(R_{A} \times 6\right)-38.64+47.14-(70 \times 2)=0 . \\
& R_{A}=21.91 \mathrm{kN} \\
& \Sigma M_{B}=0(R H S) \\
& -47.14+20-20+\left(20 \times 5 \times \frac{5}{2}\right)+(10 \times 5)-\left(R_{C} \times 4\right)=0 . \\
& \quad R_{C}=63.205 \mathrm{kN}
\end{align*}
$$

$$
\begin{aligned}
& R_{C}=63.205 \mathrm{kN} \\
&(1) \Rightarrow R_{B}=180-(21.91+63.205) \\
& R_{B}=63.215 \mathrm{kN} 94.895
\end{aligned}
$$

SFD

1) Analyse the given frame, draw BMD $E E C$.

soly
(1) EEM.

$$
\begin{align*}
& M_{F A B}=M_{F B A}=M_{F C D}=M_{F D C}=0 . \\
& M_{F B C}=-\frac{W l^{2}}{12}=\frac{-40 \times 6^{2}}{12}=-120 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=\frac{40 \times 6^{2}}{12}=120 \mathrm{kNm} \tag{i}
\end{align*}
$$

(2) S-D Equis.
(3) Equm Condition

$$
\begin{aligned}
& E M_{B}=0 . \quad, \quad M_{B A}+M_{B C}=0 \\
& E I \theta_{B}-120+\frac{4}{3} E I \theta_{B}+\frac{2}{3} E I \theta_{C}=0 .
\end{aligned}
$$

point c,

$$
\begin{align*}
& \operatorname{Dint}^{\prime} M_{E B}+M_{C D}=0 \\
& 120+0.66 E I O_{B}+1.33 E I \theta_{C}+E I \theta_{C}=0 \\
& 0.66 E I \theta_{B}+2.33 E I \theta_{C}=-120 \tag{2}
\end{align*}
$$

Solving ($) \mathrm{S}(8)$

$$
\begin{aligned}
& E I O_{B}=+71.85 \approx 72 . \\
& E I O_{C}=-72
\end{aligned}
$$

(4) Final mpoments.

$$
\begin{aligned}
& M_{A B}=0.5 \times 72=36 \mathrm{kNm} \\
& M_{B A}=72 \mathrm{kN}-\mathrm{m} \\
& M_{B C}=-120+\frac{4}{3}(72)+2 / 3(-72)=-71.76 \approx-72 \mathrm{kNm} \\
& M_{C B}=120+2 / 3(72)+4 / 3(-72)=71.76 \approx 72 \mathrm{kN}-\mathrm{m} \\
& M_{C D}=-72 \mathrm{kN}-\mathrm{m} \\
& M_{D C}=0.5(-72)=-36 \mathrm{kNm}
\end{aligned}
$$

BK

$$
\begin{aligned}
& =\frac{w l^{2}}{8} \\
& =\frac{40 \times 6^{2}}{8} \\
& =180 \mathrm{kN}-\mathrm{m} \\
& = \\
& =R_{C} \quad \sum m_{C}=0 .
\end{aligned}
$$

*R $\sum M_{C}=0$. $x_{D}=27 \mathrm{kN}$
$=0$

Sof r
(1) FEM.

$$
\begin{aligned}
& M_{P A B}=M_{F D A}=0 . \\
& M_{F B C}=\frac{-W 12}{12}=\frac{-12 \times 4^{2}}{12}=-16 \mathrm{kNH} \\
& M_{F C B}=\frac{W l^{2}}{12}=16 \mathrm{kN-m} \\
& M_{B D}=20 \times 1=20 \mathrm{kN-m}
\end{aligned}
$$

(2) S - D eques, $\theta_{A}=0, \theta_{C}=0, \Delta=0$.

$$
\begin{align*}
M_{A B} & =0+\frac{2 E I}{3}\left(\theta_{B}\right)=2 / 3 E I O_{B} \\
M_{B A} & =2 / 3 E I\left(2 \theta_{B}\right)=1.33 E I \theta_{B} \tag{2}\\
M_{B C} & =-16+\frac{2 E(2 I)}{4}\left(2 \theta_{B}+\theta_{C}^{\theta}\right) \\
& =-16+2 E I O_{B}+E I \theta_{C} \tag{3}\\
M_{C B} & =16+\frac{2 E(2 I)}{4}\left(\theta_{B}+2 \theta_{C}^{B}\right) \\
& =16+E E O_{B}+2 E A_{0}^{O} \tag{4}
\end{align*}
$$

Equm Equ's.
At joint B, $M_{B A}+M_{B C} M_{B D}=0$

$$
1.33 E I O_{B}+2 E I O_{3}+\triangle I O-16=0
$$

$$
E \pm \theta_{B}=-1.2
$$

(4) Final Moments.

$$
\begin{aligned}
& M_{A B}=2 / 3(-1.2)=-0.792 \approx-0.8 \mathrm{kN}-\mathrm{m} \\
& M_{B A}=4 / 3(-1.2)=-1.6 \mathrm{kNom} \\
& M_{B C}=-16+2 / 3(-1.2)=-18.4 \mathrm{kNm} \\
& M_{\text {CB }}=16+(-1.2)=148 \mathrm{BNNm}
\end{aligned}
$$

BC

$$
\begin{aligned}
& \frac{w l^{2}}{8}=\frac{+12 \times 4^{2}}{8} \\
& =24 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Sol
(1)

$$
\begin{aligned}
& M_{F B D}=M_{F D B}=0 . \\
& M_{F A B}=\frac{-\omega l}{8}=\frac{-120 \times 4}{8}=-60 \mathrm{kN-m} \\
& M_{F B A}=\frac{\omega l}{8}=60 \frac{\mathrm{kNm}}{=-30 \times 4^{2}} \\
& M_{F B C}=\frac{-\omega l^{2}}{12}=-40 \mathrm{kN-m} \\
& M_{F C B}=\frac{\omega l^{2}}{12}=40 \mathrm{kN-m}
\end{aligned}
$$

(2) S-D. Equis. $\quad \nabla_{A}=0, \theta_{D}=0, \Delta=0$.

$$
\begin{align*}
& M_{A D}=-60+\frac{2 E I}{4}\left(\theta_{B}\right)=-60+0.5 E I \theta_{B} \tag{i}\\
& M_{B A}=60+\frac{2 E I}{4}\left(2 \theta_{B}\right)=60+E I \theta_{B} \\
& M_{B C}=-40+\frac{2 E I}{4}\left(2 \theta_{B}+\theta_{C}\right)=-40+E I \theta_{B}+0.5 E I \theta_{C}- \tag{3}\\
& M_{C B}=40+\frac{2 E I}{4}\left(\theta_{B}+2 \theta_{C}\right)=40+0.5 E I \theta_{B}+E I \theta_{C}- \tag{4}\\
& M_{B D}=\frac{2 E I}{4}\left(2 \theta_{B}\right)=E I \theta_{B} \\
& M_{D B}=\frac{2 E I}{4}\left(\theta_{B}\right)=0.5 E I \theta_{B}
\end{align*}
$$

Foint $B, \quad M_{B A}+M_{B C}+M_{B D}=0$.

$$
\begin{align*}
& 60+I O_{B}-40+E I O_{B}+0.5 E I \theta_{C}+E I \theta_{B}=0 \\
& 3 E I O_{B}+0.5 E I O_{C}=-20-(1) \tag{ㄱ}
\end{align*}
$$

Foint $C, M C B=0$.

$$
\begin{align*}
& 40+0.5 E I \theta_{B}+E I \theta_{C}=0 . \\
& 0.5 E I O_{B}+E I O_{C}=-40 \tag{8}
\end{align*}
$$

Solving ($)$ I (8),

$$
E I O_{B}=0
$$

$$
E X \theta_{2}=-40 .
$$

(4) Final Moments.

$$
\begin{aligned}
& M_{A B}=-60+0.5(0)=-60 \text { kNm } \\
& M_{B A}=60+0=60 \mathrm{kN-m} \\
& M_{B C}=-40+0+0.5(-40)=-60 \mathrm{kNom} \\
& M_{C B}=+40+0(-0.5(0)+(-40)=0 \\
& M_{B D}=0 \quad M_{D B}=0 .
\end{aligned}
$$

BM

$$
\begin{aligned}
A B & =\frac{\omega l}{4} \\
& =\frac{120 \times 4}{4} \\
& =120 \mathrm{kN-m} \\
B C & =\frac{\omega l^{2}}{8} \\
& =\frac{30 \times 4^{2}}{8} \\
& =60 \mathrm{kN-m}
\end{aligned}
$$

ser
(1) FEM

$$
\begin{aligned}
& M_{F A B}=-\frac{W l^{2}}{12}=-\frac{30 \times 4^{2}}{12}=-40 \mathrm{kN}-\mathrm{m} \\
& M_{F A B}=+\frac{W l^{2}}{12}=40 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=-\left[\frac{W a b^{2}}{L^{2}}+\frac{W a b^{2}}{d^{2}}\right]=-\left[\frac{30 \times 2 \times 4^{2}}{6^{2}}+\frac{30 \times 4 \times 2^{2}}{6^{2}}\right]=-40 \mathrm{kN-m} \\
& M_{F C B}=\left[\frac{W a^{2} b}{l^{2}}+\frac{W a^{2} b^{2}}{d^{2}}\right]=40 \mathrm{kN}-\mathrm{m} \\
& M_{F B D}=-\frac{W l}{8}=\frac{-60 \times 4}{8}=-30 \mathrm{kN} \mathrm{~m} \\
& M_{F D B}=+\frac{W l}{8}=\frac{60 \times 4}{8}=30 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

(2) $S-D$ Equis,
(3) Joint Equm Equis.

At roint $B, M_{B A}+M_{B C}+M_{B D}=0$.

$$
\begin{gather*}
40+2 E I \theta_{B}-40+E I \theta_{B}+0.5 E I \theta_{C}-30+E I \theta_{B}=0 . \\
4 E I \theta_{n}+0.5 E I \theta_{C}=30-(7) \tag{7}
\end{gather*}
$$

$$
\begin{array}{r}
q+E I \theta_{C}+0.5 E I \theta_{B}=0 \\
0.5 E I \theta_{B}+E I \theta_{C}=-40 . \tag{8}
\end{array}
$$

Solving © 9

$$
E I \theta_{B}=13.33 . \quad E I O_{C}=-46.67 .
$$

(4) Final Moments.

$$
\begin{aligned}
& M_{A B}=-40+13.33=-26.67 \mathrm{kN-m} \\
& M_{B A}=40+13.33=66.67 \mathrm{kNNm} \\
& M_{B C}=-40+13.33+0.5(-46.67)=-50.005 \mathrm{kNm} \\
& M_{C B}=40+0.5(13.33)+(-46.67)=-5 \times 10^{-03} \approx 0 . \\
& M_{B D}=-30+13.33=-16.67 \mathrm{kN} \mathrm{~m} \\
& M_{D B}=30+13.33(0.5)=36.665 \mathrm{kNrm}
\end{aligned}
$$

$$
\begin{aligned}
& B M)_{A B}=\frac{W l^{2}}{8}=\frac{30 \times 4^{2}}{B}=60 \mathrm{kNm} \\
& B M)_{B C}=\frac{W l}{3}=\frac{30 \times C}{2}=60 \mathrm{kN} \mathrm{~m} \\
& B M)_{B D}=\frac{W l}{4}=\frac{60 \times 4}{4}=60 \mathrm{kNm}
\end{aligned}
$$

EC

Cases.

u.

$$
\delta \rightarrow \text { Stray }
$$

' S ' is an additional unknown
(i) ' S ' is taken only for Vertical members.
(ii) $\delta=0$, for Horizontal numbers.

1) Analyse the portal frame shown in fig
by $S-D$ method. Draw $B M D$ in elastic Curve (EC)

Self
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=M_{F B A}=0 . \\
& M_{F C D}=M_{F D C}=0 \\
& M_{F B C}=\frac{-W l^{2}}{12}=\frac{-24 \times 4^{2}}{12}=-32 \mathrm{kN-m} \\
& M_{F C B}=\frac{w l^{2}}{12}=32 \mathrm{kN-m}
\end{aligned}
$$

(ii) $S-D$ Equation

$$
\theta_{A}=0, \quad \theta_{D}=0 .
$$

' S ' is an additional unknown \mathcal{G} is taken.
Only for vertical members.

$$
\begin{align*}
M_{A B} & =M_{F A B}+\frac{2 E I}{l}\left[2 \theta_{A}+\theta_{B}-\frac{3 \Delta}{l}\right] \\
& =0+\frac{2 E I}{6}\left[\theta_{B}-\frac{3 \delta}{6}\right] \\
& =0.33 E I \theta_{B}-0.166 E I \delta \tag{1}\\
M_{B A} & =0+\frac{2 E I}{6}\left[2 \theta_{B}-\frac{3 \delta}{6}\right] \\
& =0.66 E I Q_{D}-0.166 E I S \tag{2}
\end{align*}
$$

$$
\begin{align*}
M_{B C} & =\frac{2 E I}{4}\left[2 \theta_{B}+\theta_{C}\right]-32 \\
& =E I \theta_{B}+0.5 E I \theta_{C}-32 \tag{3}\\
M_{C B} & =\frac{2 E I}{4}\left[\theta_{B}+2 \theta_{C}\right]+32 \\
& =0.5 E I \theta_{B}+E I \theta_{C}+32 \tag{4}\\
M_{C D} & =\frac{2 E I}{4}\left[2 \theta_{C}-\frac{38}{4}\right] \\
& =E I \theta_{C}-0.375 E I \delta . \\
M_{D C} & =\frac{2 E I}{4}\left[\theta_{C}-\frac{38}{4}\right] \\
& =0.5 E I \theta_{C}-0.375 E I \& \tag{6}
\end{align*}
$$

(iii) Equilibincm Condition.
(1) At joint $B, \quad M_{B A}+M_{B C}=0$.

$$
\begin{equation*}
0.66 E I \theta_{B}+0.5 E I \theta_{C}-0.166 E I \delta=32 \tag{I}
\end{equation*}
$$

(2) At joint $C, M_{C B}+M_{C D}=0$.

$$
\begin{equation*}
0.5 E I O_{B}+2 E I O C-0.375 E I S=-32 \tag{II}
\end{equation*}
$$

(3) Shear Condition

Consider only Vertical members with horizontal leads. Assume all the members in clockwise direction

$$
\Sigma H=0
$$

$$
\begin{align*}
H_{A}+H_{D}=100 & \longrightarrow \\
\sum M_{B}=0 . & \\
-H_{A} \times 6+M_{A B}+M_{B A} & =0 .
\end{align*}
$$

$$
\begin{align*}
& \text { - } H_{A}=\frac{1}{6} \text { LNAB ISAD } \\
& =\frac{1}{6}\left[0.33 E I \theta_{B}-0.166 E I S+0.66 E I \theta_{B}\right. \\
& \text { [0.166 EIS] } \\
& =\frac{1}{6}\left[E I \theta_{B}-0.332 E I \delta\right] \\
& H_{A}=0.166 E I \theta_{23}-0.055 E I S \tag{b}\\
& \Sigma M_{C}=0 \text {. } \\
& -H_{D} \times 4+M_{C D}+M_{D C}=0 \\
& H_{D}=\frac{1}{4}\left[1.5 E I \theta_{C}-0.75 \text { ETS }\right] \\
& H_{D}=0.375 E \theta_{C}-0.1875 E I \delta \tag{c}
\end{align*}
$$

Sulss (b) se in equ (a)

$$
\begin{align*}
& 0.166 E I \theta_{B}-0.055 E I S+0.375 E I \theta_{C}-0.1875 E I \delta=100 \\
& 0.166 E I \theta_{B}+0.375 E I \theta_{C}-0.243 E I 8=100 ⿻ \rightarrow 日 \$ \tag{113}
\end{align*}
$$

Solving (I), (II) $\&$ (ii)

$$
\begin{array}{ll}
\theta_{B}=-2.89 / E I . & \delta=-615.03 / E I . \\
\theta_{C}=-130.60 / E I . &
\end{array}
$$

(iv) Final Moments.

$$
\begin{aligned}
& M_{A B}=101.14 \mathrm{kNrm} \\
& M_{B A}=100.18 \mathrm{kNrm} \\
& M_{B C}=-100.19 \mathrm{kNrm} \\
& M_{C B}=-100.04 \mathrm{kNrm} \\
& M_{C D}=100.04 \mathrm{kNm} \\
& M_{D C}=165.33 \mathrm{kNrm} .
\end{aligned}
$$

$$
B M)_{\hat{B} C}=\frac{w l^{2}}{8}=\frac{24 \times 4^{2}}{8}=48 \mathrm{kN}=\mathrm{m}
$$

(2). Analyse

S-D method and draw BMD $E \in C$.

Self:
(i) FEM.

$$
\begin{aligned}
& M_{B E}=+30 \times 2=20 \mathrm{kN-m} \\
& M_{C F}=-30 \times 1=-30 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(ii) S.D. equations.

$$
\theta_{A}=0, \quad \theta_{D B}=0
$$

' S ' is an additional unknown S_{1} is taken only for vertical Members.
There is no $S-D$ equ for Overhanging portion.

$$
\begin{align*}
M_{A B} & =0+\frac{2 E I}{4}\left[\theta_{B}-\frac{3 \delta}{4}\right] \\
& =0.5 E I \theta_{B}-0.375 E I \delta \tag{1}\\
M_{B A} & =\frac{2 E I}{4}\left[2 \theta_{D}-\frac{3 \delta}{4}\right] \\
& =E I \theta_{B}-0.375 E I \delta \tag{2}\\
M_{B C} & =\frac{2 E I}{4}\left[2 \theta_{B}+\theta_{C}-2 /\right. \tag{3}
\end{align*}
$$

$$
\begin{align*}
M_{C B} & =\frac{\alpha E L}{4}\left[2 \theta_{C}+\theta_{B}\right] \\
& =E I \theta_{C}+0.5 E \pm \theta_{B} \\
M_{C D} & =\frac{2 E I}{4}\left[2 \theta_{C}-\frac{38}{4}\right]=E I \theta_{C}-0.375 E I \delta \tag{5}\\
M_{D C} & =\frac{2 E I}{4}\left[\theta_{C}-\frac{3 \delta}{4}\right]=0.5 E I \theta_{C}-0.375 E I \delta
\end{align*}
$$

(iii) Equilibrium Equ's
(a) joint $B, \quad m_{B A}+m_{B C}+m_{B E}=0$.

$$
\begin{array}{r}
E I \theta_{B}-0.375 E I \delta+E I \theta_{B}+0.5 E I \theta_{2}+20=0 . \\
2 E I \theta_{B}+0.5 E I Q_{C}-0.375 E I \delta=-20 \tag{J}
\end{array}
$$

Q Joint $E, M_{C B}+M_{C D}+M_{C F}=0$.

$$
\begin{gather*}
E I \theta_{2}+0.5 E I Q_{B}+E I Q_{2}-0.375 E I \delta-30=0 \\
0.5 E I O_{B}+2 E I Q_{2}-0.375 E I \delta=30 \tag{II}
\end{gather*}
$$

(iv) Shear Condition

Consider only vertical members with hori loads. Assume all toe merrbers P_{2} Clocterise direction.

$$
\begin{align*}
& \sum H=0 \\
& \quad H_{A}+H_{D}=0 \tag{a}
\end{align*}
$$

$$
\begin{align*}
& \sum m_{B}=0 \\
& \left(-H_{\theta} \times 4\right)+M_{A B}+M_{B A}=0 . \\
& H_{A}=\frac{0.5 E I \theta_{B}-0.37 S E I 8+E I \theta_{B}-0.375 E I S}{4} \\
& H_{A}=0.375 E I \theta_{B}-0.1875 E I \delta
\end{align*}
$$

$$
\begin{align*}
&\left(-H_{D} \times 4\right)+m_{C D}+m_{D C}=0 . \\
& H_{D}=\frac{E I \theta_{C}-0.375 E I S+0.5 E I Q}{4} .0 .375 E I 8 \\
& H_{D}=0.375 E I Q_{C}-0.1875 E I S \tag{c}
\end{align*}
$$

Subs (b) $\{$ (C) in equ (a)

$$
\begin{equation*}
0.375 E I \theta_{B}+0.375 E I \theta_{C}-0.375 E 28=0 \tag{II}
\end{equation*}
$$

Solving equ (1), (II) Σ_{1} (III)

$$
\begin{aligned}
& E I Q_{B}=-13.80 \\
& E I Q_{C}=19.52 \\
& E I \delta=5.71
\end{aligned}
$$

(v) Find Moments.

Subs the values of $E I O_{3}, E I O_{C}$ \& EFS in equij (1) to (b)

$$
\begin{aligned}
& m_{A B}=-9.04 \mathrm{kN}-\mathrm{m} \\
& M_{B A}=-15.94 \mathrm{kN}-\mathrm{m} \\
& M_{B C}=-4.04 \mathrm{kNm} \\
& M_{C B}=12.62 \mathrm{kNm} \\
& M_{C D}=17.37 \mathrm{kNm} \\
& M_{D C}=7.62 \mathrm{kN}
\end{aligned}
$$

EC
in figure by $S-D$ milted $\&$ Drain
$B M D E E C$.

Sd:-
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=M_{F B A}=M_{F C D}=M_{F D C}=0 . \\
& M_{F B C}=\frac{-W l^{2}}{12}=\frac{-40 \times 6^{2}}{12}=-120 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=\frac{+W l^{2}}{12}=120 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(ii) $S-D$ equation.

$$
\theta_{A}=\theta_{D}=0
$$

' δ ' is an odditiond unknown G is taken only for vertical members.

$$
\begin{align*}
M_{A B} & =0+\frac{2 E I}{4}\left[\theta_{B}-\frac{38}{4}\right] \\
& =0.5 E I \theta_{B}-0.375 E I \delta \rightarrow 0 \tag{1}\\
M_{B A} & =0+\frac{2 E I}{4}\left[2 \theta_{B}-3 / 48\right] \\
& =E I \theta_{B}-0.375 E 2 \delta \rightarrow \frac{2 E(2 I)}{6}\left[2 \theta_{B}+\theta_{C}\right]-120 . \tag{2}\\
M_{B C} & =1.33 E E \theta_{B}+0.667 E I \theta_{C}-120
\end{align*}
$$

$$
\begin{align*}
\therefore & =0.66+E L \theta_{B}+1.33 E \pm \theta_{C}+120 \\
& =\frac{2 E(2 I)}{6}\left[2 \theta_{C}-\frac{3 \delta}{6}\right] \tag{4}\\
M_{C D} & =1.33 E I \theta_{C}-0.33 E I S \rightarrow(5) \\
M_{D C} & =\frac{2 E(2 \pm)}{6}\left[\theta_{C}-\frac{3 S}{6}\right] \\
& =0.6 \theta E I \theta_{C}-0.33 E I S \longrightarrow(6)
\end{align*}
$$

(iii) Equm Condition
(a) At joint B.

$$
\begin{align*}
& M_{B A}+M_{B C}=0 \\
& 2.33 E I Q_{B}+0.667 E I Q_{C}-0.375 E I S=120 \tag{4}
\end{align*}
$$

(b) At joint C

$$
\begin{align*}
& M_{C B}+M_{C D}=0 . \\
& 0.667 E I Q_{B}+2.6676 I \theta_{C}-0.33 E T S=-120
\end{align*}
$$

(c) Shear Condition

Consider only vertical members with horizontal loads. Assume all the moments in Clockwise direction.

$$
\begin{align*}
& S H=0 \\
& H_{A}+H_{D}=0 \tag{a}
\end{align*}
$$

$$
\begin{align*}
& \sum M_{B}=0 . \\
& -H_{A} \times 4+M_{A B}+M_{B A}=0 . \\
& H_{A}=\frac{1}{4}\left[1.5 E I \theta_{B}-0.75 E I \delta\right] \\
& H_{A}=0.375 E I \theta_{B}-0.1875 E I 8 \tag{5}\\
& \sum M_{C}=0 . \\
& -H_{D} \times 6+M_{C D}+M_{D C}=0 \\
& H_{D}=\frac{1}{6}\left[2 E I \theta_{C}-0.66 E I \delta\right] \\
& H_{D}=0.33 E I \theta_{C}-0.11 E I \delta \tag{C}
\end{align*}
$$

Subes (5) \& (C) in (a).

$$
\begin{equation*}
0.375 E I \theta_{B}+0.33 E I \theta_{C}-0.2975 E I S=0 \tag{11}
\end{equation*}
$$

Solving (I), (II) \& (II).

$$
\begin{aligned}
& E I \theta_{B}=72.73 \\
& E I \theta_{C}=-60.08
\end{aligned}
$$

(v) Einal Maments.

$$
\begin{aligned}
& M_{A B}=26.98 \mathrm{kN-m} \\
& M_{B A}=63.34 \mathrm{kN-m} \\
& M_{B C}=-63.34 \mathrm{kN-m} \\
& M_{C B}=88.60 \mathrm{kNmm} \\
& M_{C D}=-88.163 \mathrm{kNHm} \\
& M_{D C}=-47.90 . \mathrm{kNrm}
\end{aligned}
$$

SOI: (1) FEM.

$$
\begin{aligned}
& \text { (1) } \mathrm{KEM} \\
& M_{F A B}=-\frac{2 \times 1 \times 3^{2}}{4^{2}}=-1.125 \mathrm{kNm} \\
& M F B A=\frac{2 \times 1)^{2} \times 3}{4^{2}}=0.375 \mathrm{kNm} \\
& M_{F B C}=\frac{-16 \times 0.5 \times 1.5^{2}}{2^{2}}=-4.50 \mathrm{kN-m} \\
& M_{F C B}=\frac{16 \times 0.5^{2} \times 1.5}{2^{2}}=1.50 \mathrm{kN-m} \\
& M_{F C D}=-\frac{10 \times 2^{2}}{12}=3.33 \mathrm{kN-m} \\
& M F D C=\frac{10 \times 2^{2}}{12}=3.33 \mathrm{kNm}
\end{aligned}
$$

(2) S-D. Equs

$$
\begin{align*}
& \text { (2) } \theta_{A}=0, \theta_{D}=0 . \\
& M_{A B}=-1.125+\frac{2 E I}{4}\left(\theta_{B}-\frac{3 A}{4}\right)=-1.125+0.5 E I \theta_{B}-0.375 E I \Delta \text { - (1) } \tag{1}\\
& M_{B A}=0.375+\frac{2 E I}{4}\left(2 \theta_{B}-\frac{3 \Delta}{4}\right)=0.375+E I \theta_{B}-0.375 E I \Delta \text {-(2) } \\
& M_{B C}=-4.5+\frac{2 E(2 I)}{2}\left(2 \theta_{B}+\theta_{C}\right)=-4.5+4 E I \theta_{B}+2 E I \theta_{C}-\text { (3) } \\
& M_{C B}=1.5+\frac{2 E(2 I)}{2}\left(2 \theta_{C}+\theta_{B}\right)=1.5+2 E I \theta_{B}+4 E I \theta_{C}-\text { (4) } \tag{5}\\
& M_{C D}=-3.33+\frac{2 E(2 I)}{2}\left(2 \theta_{C}-\frac{3 D}{2}\right)=-3.33+4 E I \theta_{C}-3 E I \Delta-(5) \\
& M_{D C}=3.33+\frac{2 E(2 I)\left(\theta_{C}-\frac{3 D}{2}\right)=3.33+2 E I \theta_{C}-3 E I D-6}{}
\end{align*}
$$

(1) Soint B, $m_{B A}+m_{B C}=0$

$$
\begin{array}{r}
0.375+E I \theta_{B}-0.375 E I D-6.5+4 E I \theta_{B}+2 E I \theta_{C}=0 . \\
5 E I \theta_{B}+2 E I \theta_{C}-0.375 E I \Delta=4.125 . \tag{1}
\end{array}
$$

(2) Jrint $C, M_{C B}+M_{C D}=0$.

$$
\begin{gather*}
1.5+2 E I \theta_{B}+4 E I \theta_{C}-3.333+4 E I \theta_{c}-3 E I \Delta=0 . \\
2 E I \theta_{3}+8 E I \theta_{C}-3 E I A=1.833 \text {-II. } \tag{II}
\end{gather*}
$$

(3) Shear Condition

$$
\sum m_{B}=0 .
$$

$$
\left(-H_{A} \times 4\right)+m_{B A}+m_{A B}-(2 \times 3)=0 .
$$

$$
H_{A}=\frac{-1.125+0.5 E I \theta_{D}-0.375 E I \Delta+0.375+E I \theta_{B}-0.375 E I \Delta-6}{4}
$$

$$
\begin{equation*}
H_{A}=-1.6875+0.375 E I \theta_{B 3}-0.1875 E I g \tag{b}
\end{equation*}
$$

$$
\Sigma m_{c}=0
$$

$$
\left(-l_{D} \times 2\right)+m_{C D}+m_{D C}+(10 \times 2 \times 1)=0 .
$$

$$
\begin{gather*}
H_{D}=\frac{M_{C D}+m_{D C}+20}{2} \\
H_{D}=-\frac{3.33+4 E I \theta_{C}-3 E I D+3.33+2 E I \theta_{C}-3 E I D+20}{2} \\
H_{D}=10+3 E I \theta_{C}-3 E I \Delta \text { CC } \tag{III}
\end{gather*}
$$

$\Leftrightarrow 0.375 E I \theta_{D}+3 E I \theta_{c}-3.1875 E I D=9.68$

Solving (1), (11) a (il).

$$
\begin{aligned}
& E I \theta_{B}=1.196 \\
& E I \theta_{C}=-1.78 \\
& E I D=-4.57 .
\end{aligned}
$$

(4) Final Moments.

Introduction.
This method is widely used for the analysis of indeterminate structures. In this method, solution Of simultaneous equations of slope deflection melted is replaced by an iterative distribution procedure. For fairly higher degree of indeterminate structures this method is ideally suited.

Terminology.
(1) Carol Over Moment.

When a moment is applied at one end of a number allowing rotation of that end at fixing the for and, some moment develops at the for end also, this moment is called Carry Over Moment.

Thus, in bearn AB shown in figure, if M is the moment applied at and A, allowing rotation of A and M^{\prime} is the moment developed at B, then M^{\prime} is the Carry over moment.
(2) Carry Over factor

The ratio of Carry over moment to applied moment is called carly over factor.

In beam $A B$,
Carry over factor $=\frac{M^{\prime}}{M}$
(3) Stiftres s

Moment required to rotate an end by unit angle (1 radian), when rotation is permitted at that end, is called stiffness of the beam. Thurs in tee beam $A B$, if $O A$ is the rotation at end A,

Stiffness of the beam $A B=k=\frac{M}{\theta_{A}}$.
(4) Distribution factor.

When a moment is applied to a rigid joint, Where a number of members are meeting, the applied moment is shared by the members melting at that joint. The ratio of the moment shared by a number to the applied moment at the joint is catted the distribution factor. of That member. Thus, if MOA is the moment shared by member $O A$ when moment M is applied at joint 0 , then the distribution factor for member $O A$ is.

$$
d_{O A}=\frac{M_{0 A}}{M}
$$

Consider beam $A B$ of span L shown in figure 1 , In this, moment M is applied at end A, where rotation is permitted, while the and B. is fixed. Let M^{\prime} be the moment developed at B and Q_{A} be the rotation at A. As defined cartier,

$$
\text { Carey over factor }=\frac{M^{\prime}}{M}
$$

Stiffness of beam $A B=K=\frac{M}{O_{A}}$

Fig 1.
To find $M^{\prime} \Sigma_{C} \theta_{A}$, consistent deformation mitred may be used. Basic determinate structure selected is a simply supported beam as shown in fig (2) Let $O_{A 1} \& O_{B 1}$ be rotation, at ends $A S B$ respectively. To determine these rotations Conjugate beam method may be used. Fig (3) shows such a beam with (M/EI)

Fig 2. Basic determinate beam Subject to M.

$$
\left(\frac{M}{E I}\right)
$$

Fig 3-Conjugate

$$
\begin{align*}
& \theta_{A_{1}}=R_{A}^{\prime}=\frac{a}{3}\left(\frac{1}{2} \times-1 \overline{E I}\right)=\overline{3 E I} \\
& \theta_{B l}=R_{B}^{\prime}=\frac{1}{3}\left(\frac{1}{2} \times L \times \frac{m}{E I}\right)=\frac{M L}{6 E I} \tag{2}
\end{align*}
$$

Now, Consider basic determinate structure subject to moment M^{\prime} at B as shown in o fig (4). Let $\theta_{A 2}$ and OBs be the rotations at the end A and end B respectively. Conjugate beam with load diagram ($M^{\prime} / E I$) for this case is shown in fig (S).

Fig 4 -Basic determinate beam subject to M^{\prime}

Fig 5. - Conjugate Beam.

$$
\begin{align*}
& \theta_{A 2}=R_{A}^{\prime \prime}=1 / 3\left(1 / 2 \times L \times \frac{M^{\prime}}{E I}\right)=\frac{M^{\prime} L}{6 E I} \tag{3}\\
& \theta_{B_{2}}=R_{B}^{\prime \prime}=2 / 3\left(1 / 2 \times L \times \frac{M^{\prime}}{E I}\right)=\frac{M^{\prime} L}{3 E I} \tag{4}
\end{align*}
$$

Case 1.
Carrion over factor.

$$
\begin{array}{ll}
\theta_{B 1}=\theta_{B 2} \\
\frac{M L}{6 E I}=\frac{M^{\prime} L}{3 E I} . & \therefore \text { Carry Over }=\frac{M^{\prime}}{M}=\frac{M / 2}{M}=1 / 2 \\
M^{\prime}=M / 2
\end{array}
$$

$=00$

$$
\begin{aligned}
\theta_{A} & =\theta_{A 1}-\theta_{A 2} . \\
& =\frac{M L}{3 E I}-\frac{M^{\prime} L}{6 E I} \\
& =\frac{M L}{3 E I}-\frac{M L}{12 E I} . \\
& =\frac{M A}{3 E I}\left(1-\frac{1}{4}\right) \\
& =\frac{M L}{12 E I}(4-1) \\
O_{A} & =\frac{M L}{4 E I} .
\end{aligned}
$$

$$
\left(M^{\prime}=M / 2\right)
$$

Stiffness, $k=\frac{M}{O A}=\frac{M}{M L / 4 E I}=\frac{4 E I}{L}$
Expression. for Distribution factor.

Consider the rigid jointed plane shown in fig; in Which thee are four members $O A, O B, O C S O D$ melting at point 0 . Let M be the moment applied at joint 0 , Since joint O is rigid, all the members rotate by the same angle ' θ ', Let $M_{1}, M_{2}, M_{3} \& M_{4}$ be the moments shared by members $O A, O B, O C \& O D$ respectively. Then

$$
M_{1}+M_{2}+M_{3}+M_{4}=M
$$

Let, $K_{1}, K_{2}, K_{3}, G k_{4}$ be stifinesses and $L_{1}, L_{2}, L_{3} \varepsilon_{4} L_{4}$ be the lengths of members $O A, O B, O C \& O D$ respectively.

$$
\begin{aligned}
& k_{1} k_{2} k_{3} k_{4} \\
= & \frac{m_{1}+m_{2}+m_{3}+m_{4}}{k_{1}+k_{2}+k_{3}+k_{4}} \\
\theta= & \frac{M}{\sum_{i=1}^{4} k_{i}} \\
M_{i} & =k_{i} \theta . \\
M_{i} & =k_{i}\left(\frac{M}{\sum_{i=1}^{4} k_{i}}\right) .
\end{aligned}
$$

Thus, a moment which is applied at a joint is shored by members meeting of the joint in proportion to their stiffresses.

$$
\therefore \text { Distribution factor }=\frac{M_{i}}{M}=\frac{K_{i}}{\sum_{i=1}^{4} k_{i}}
$$

Thus, distribution factor for a member is k_{i} / \sum_{k}, where Summation is over various members meeting at the joint. $\sum K$ is called joint stiffness.

Relative Stiffness. (k)
The ratio of M-I. to span is called relative Stiffness

$$
K=I / L
$$

$n=\frac{-}{l .} \rightarrow$ If end is fixed / Continouse.
(ii) $k=\frac{3}{4} \cdot \frac{I}{l} \rightarrow$ If for end is Hinged/Roller/simple Support.
(iii) $k=0 \rightarrow$ For Overhanging portion.

Ex:- Continouse Support.

(i) Wry ' B ' \rightarrow ' A ' - Fixed $\} K=I / l$.
(ii) Writ ' C ' $\rightarrow{ }^{\prime}$ ' B '-Continouse - $k=I / L$

$$
\text { 'D' - Not Continouse - } K=3 / 4 \text {. I/ } \text {. }
$$

(s.s)
(iii) Wot ' D ' $\rightarrow{ }^{\prime} C$ '-Continonse - $k=I / L$.
' E ' - OverHanging - $k=0$.
Steps Involved in M.D method.
(1) Assuming all ends are fixed, find the FEM's developed.
(2) Calculate distribution factors for all members meeting at a joint.
(3) Balance a joint by distributing balancing moment to various members meeting at the joint proportional to their distribution factor. Do similar exercise for all joints.
(4) Carrovinhalf the distributed moment to the far ends of the members. This upsets the balance of there point.
(s) Repeat steps 3 and 4 till distributed moments are negligible.
(6) Sum up all the moments at a particular end op. the member to get final moment.

1) Analyze the $C B$ shown in figure. Draw $B M Q E E C$.

sol
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W l^{2}}{12}=-\frac{30 \times 6^{2}}{12}=-90 \mathrm{kN-m} \\
& M_{F B A}=\frac{\mathrm{Hl}^{2}}{12}=\frac{30 \times 6}{12}=90 \mathrm{kN-m} \\
& M_{F B C}=\frac{-W a b^{2}}{l^{2}}=\frac{-72 \times 4 \times 2^{2}}{6^{2}}=-32 \mathrm{kN-m} \\
& M F C B=\frac{W a^{2} b}{l^{2}}=\frac{72 \times 4^{2} \times 2}{6^{2}}=64 \mathrm{kNHM}
\end{aligned}
$$

(2) Distribution Factors. (D.F)

Joint	Members.	K	$\sum K$	$D \cdot F \Rightarrow K$
B	$B A$	$I / L=\frac{3 I}{6}=0.5 I$		
	$B C$	$I / L=\frac{2 I}{6}=0.33 I$	$0.833 I$	0.5 0.833

(3) Distribution Table.

(2) Analyze the C.IS shown

Selt
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W a b^{2}}{l^{2}}=\frac{-40 \times 3 \times 2^{2}}{5^{2}}=-19.2 \mathrm{kN-m} \\
& M_{F B A}=\frac{+W a^{2} b}{l^{2}}=\frac{40 \times 3^{2} \times 2}{5^{2}}=28.8 \mathrm{kN-m} \\
& M_{F B C}=\frac{-4 l^{2}}{12}=\frac{-30 \times 5^{2}}{12}=-62.5 \mathrm{kNm} \\
& M_{F C B}=\frac{W l^{2}}{12}=62.5 \mathrm{kN-m} \\
& M F A D=\frac{-W l}{8}=\frac{-60 \times G}{8}=-30 \mathrm{kN-m} \\
& M_{F D C}=\frac{+W l}{8}=30 \mathrm{kN-m}
\end{aligned}
$$

(2) Distribution Factors.

$$
\begin{aligned}
& B M)_{A B}=\frac{W a b}{l}=\frac{40 \times 3 \times 2}{5}=48 \mathrm{kNm} \\
& B M)_{B C}=\frac{W l^{2}}{8}=\frac{30 \times 5^{2}}{8}=93.75 \mathrm{kNm} \\
& B M)_{C D}=\frac{W l}{4}=\frac{60 \times 4}{4}=60 \mathrm{kmm}
\end{aligned}
$$

BMD

E

(1.5I
(2I)
(土)

Solt
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=-\left(\frac{W a b^{2}}{l^{2}}+\frac{W a b^{2}}{l^{2}}\right)=-\left(\frac{40 \times 2 \times 4^{2}}{6^{2}}+\frac{40 \times 4 \times 2^{2}}{6^{2}}\right)=-53.33 \mathrm{kN} \mathrm{~m} \\
& M_{F B A}=\left(\frac{W a^{2} b}{l^{2}}+\frac{W a^{2} b}{l^{2}}\right)=\left(\frac{40 \times 2^{2} \times 4}{6^{2}}+\frac{40 \times 4 \times 2^{2}}{6^{2}}\right)=53.33 \mathrm{kNm} \\
& M_{F B C}=\frac{-W l^{2}}{12}-\frac{W a b^{2}}{l^{2}}=-\frac{20 \times 6^{2}}{12}-\frac{50 \times 2 \times 4^{2}}{6^{2}}=-104.4 \mathrm{k} \mathrm{kN} \cdot \mathrm{~m} \\
& M_{F C B}=\frac{+20 \times 6^{2}}{12}+\frac{50 \times 2^{2} \times 4}{6^{2}}=82.22 \mathrm{kNm} \\
& M_{F C D}=\frac{-4 l}{8}=-40 \mathrm{lan}-m \\
& M_{F D C}=\frac{W l}{8}=40 \mathrm{kNm}
\end{aligned}
$$

(2) D.F.

$$
\begin{aligned}
& (B M)_{A B}=\frac{40 \times 6}{3}=80 \mathrm{kNom} \\
& B M)_{B C} \Rightarrow R_{B}=93.33 \\
& R=76.66 \\
& M_{E}=93.33 \times 2-\frac{20 \times 2^{2}}{2 .} \\
& =146.66 \mathrm{kN} \mathrm{Nm} \\
& B M)_{C D}=\frac{W 1}{4}=\frac{80 \times 4}{4}=80
\end{aligned}
$$

Sel r
(1) FEM.

$$
\begin{aligned}
& M_{P A D}=\frac{-W l^{2}}{12}=-\frac{20 \times 3^{2}}{12}=-15 \mathrm{kN-m} \\
& M_{F B A}=\frac{W l^{2}}{12}=15 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=\frac{-W l}{8}=\frac{-40 \times \mathrm{C}}{8}=-20 \mathrm{kN} \\
& M_{F C B}=\frac{W l}{8}=20 \mathrm{kN-m} \\
& M_{F C D}=\frac{-W a b^{2}}{l^{2}}=\frac{-40 \times 3 \times \mathrm{l}^{2}}{5^{2}}=-19.2 \mathrm{kN-m} \\
& M_{F D C}=\frac{W a^{2} b}{l^{2}}=\frac{40 \times 3^{2} \times 2}{5^{2}}=28.8 \mathrm{kN-m}
\end{aligned}
$$

(2) D.F.

$$
\begin{aligned}
B M)_{A R} & =\frac{W N^{2}}{8}=\frac{20 \times 3^{2}}{8} \\
& =22.5 \mathrm{kN}-\mathrm{m} \\
B M)_{B C} & =\frac{41}{4}=\frac{40 \times 4}{4} \\
& =40 \mathrm{kN-m} \\
D M)_{C D} & =\frac{W a b}{l}=\frac{40 \times 3 \times 2}{5} \\
& =48 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

(a) Near end Rotation $=m=\frac{4 E I \theta}{l .}$
(1) Far end Rotation $=m=\frac{2 E I O}{l}$.
(c) Due to Sinking $=m=-\frac{6 E I \Delta}{l^{2}}$

The above additional moments are added to FEM's.
Where, $\theta=$ Rotation, $\Delta=$ Sinking.
(5) Analyze the $C B$ shown in figure, The support is'simks by 10 mm . Take EI $=4000-\mathrm{kN} \mathrm{m}^{2}$. Draw BMD E $E C$.

Sf

(i) FENA.

$$
\begin{aligned}
& \left.D L^{20 \mathrm{kN}}\right)_{9}^{A} \\
& M_{F A B}=-\frac{\omega l}{8}-\frac{6 E I \Delta}{l^{2}}=-\frac{30 \times 4}{8}-\frac{6(1 \times 4000)(0.01)}{4^{2}}=-30 \text { form } \\
& M F D A=\frac{\omega l}{8}-\frac{6 E I D}{l^{2}}=15-15=0 \\
& M_{\text {REC }}=\frac{-\omega l^{2}}{12}-\frac{6 E R S}{l^{2}}=\frac{-20 \times 6^{2}}{12}-\frac{6(2 \times 4000)(-0.01)}{6^{2}}=-46.67 \mathrm{kam} \\
& M=20 \times 6^{2} \quad 6(2 \times 4000)(-0.01)=73.33 \mathrm{kN-m}
\end{aligned}
$$

Joint	Member	k	$S k$	$D F$
A	$A D$	0	$0.25 I$	0
	$A B$	$I / 4=0.25 I$		1
B	$B A$	$3 / 4(J / 4)=0.1875 I$	$0.5205 I$	0.36
	$B C$	$\frac{2 I}{6}=0.333 I$		0.64

(b) M.D. Table

$$
\begin{aligned}
(B M)_{A B} & =\frac{\omega l}{4}=\frac{30 \times 4}{4} \\
& =30 \mathrm{kN}=\mathrm{m} \\
(B M)_{B C} & =\frac{\omega l^{2}}{8}=\frac{20 \times 6^{2}}{8} \\
& =90 \mathrm{kNm}
\end{aligned}
$$

(6) Analyse the C.B shown in figure, if support B sinks by 12 mm . Given $E=200 \mathrm{kn} / \mathrm{mm}^{2} \quad \varepsilon \quad I=20 \times 10^{6} \mathrm{~mm}^{4}$.

Solis-

$$
\begin{aligned}
E I & =200 \times 20 \times 10^{6} \mathrm{kN}-\mathrm{mm}^{2} . \\
& =\frac{4000 \times 10^{6}}{10^{6}} \mathrm{kN}-\mathrm{m}^{2}
\end{aligned}
$$

(1) FEM.

$$
\begin{aligned}
& M_{F A B}=-\frac{6 E I D}{l^{2}}=-\frac{6 \times 4000 \times 0.012}{4^{2}}=-18 \mathrm{kN}-\mathrm{m} \\
& M_{F B A}=-\frac{6 E I D}{l^{2}}=-18 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=-\frac{6 E I D}{l^{2}}=-\frac{6 \times 2 \times 4000(-0.012)}{6^{2}}=16 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=\frac{-6 E I D}{l^{2}}=-\frac{6 \times 2 \times 4000(-0.012)}{6^{2}}=16 \mathrm{kN-m} \\
& M_{F C D}=0 \quad M_{F D C}=0
\end{aligned}
$$

No FEM for Overhanging span DE.
(α

(3) M.D.T.

(7) Figure shows a Continouse Beam $A B C D$, analyse whe beam, if the end ' A ' rotates by 0.002 radians in bockwise order $\&$ support 'R' sinks by 5 mm \& ' C ' by 2 mm . Take EI $=18000 \mathrm{kNrm}{ }^{2}$.

Solv

(1) FEM.

$$
\begin{aligned}
& M_{F A B}=0+\frac{4 E I \theta}{L}-\frac{6 E I 8}{l^{2}}=\frac{4 \times 2 \times 18000 \times 0.002}{4}-\frac{6 \times 18000 \times 0.005}{4^{2}} \\
& =4.5 \mathrm{kN}-\mathrm{m} \\
& M_{F B A}=\frac{2 E I \theta}{l}-\frac{6 E I \delta}{l^{2}}=\frac{2 \times 2 \times 18000 \times 0.002}{4}-\frac{6 \times 2 \times 18000 \times 0.005}{4^{2}} \\
& =-31.5 \text { KN-M } \\
& \text { MFBC }=0-\frac{6 E I \delta}{\ell^{2}}=-\frac{6 \times 4 \times 18000 \times(-0.003)}{\delta^{2}}=20.25 \mathrm{kNm} \\
& M_{F C B}=0-\frac{6 E I \delta}{d^{2}}=-\frac{6 \times 4 \times 18000 \times(-0.003)}{8^{2}}=20.25 \mathrm{kN}-\mathrm{m} \\
& \text { MFCD }=0-\frac{6 E I \delta}{l^{2}}=-\frac{6 \times 18000 \times(-0.002)}{3^{2}}=24 \mathrm{kN-m} \\
& M_{F D C}=0-\frac{6 E L f}{l^{2}}=\frac{-6 \times 18000 \times(-0.002)}{3^{2}}=24 \mathrm{kN-m}
\end{aligned}
$$

(2) D.F.

Joints	Mambers	K	$I K$	$D F=\frac{K}{\Sigma K}$
B	$B A$	$I / L=\frac{2 I}{4}=0.5 I$		0.5
	$B C$	$I / L=\frac{4 I}{8}=0.5 I$	I	0.5
C	$C B$	$I / L=\frac{4 I}{8}=0.5 I$.	$0.75 I$	0.67
	$C D$	$\frac{3}{4} \times \frac{I}{L}=\frac{3}{4} \times \frac{I}{3}=0.25 I$		0.33

(3).M.D.T.

(6)

Set
(1) FEM

$$
\begin{aligned}
& M_{F A B}=-\frac{W l^{2}}{12}=-\frac{12 \times 4^{2}}{12}=-16 \mathrm{kN} \\
& M_{F B A}=\frac{W l^{2}}{12}=\frac{12 \times 4^{2}}{12}=+16 \mathrm{kNom} \\
& M_{F B C}=-\left(\frac{W a b^{2}}{l^{2}}+\frac{W a b^{2}}{l^{2}}\right)=-\left(\frac{30 \times 2 \times 4^{2}}{6^{2}}+\frac{30 \times 9 \times 2^{2}}{6^{2}}\right)=-40 \mathrm{knam} \\
& M_{F C B}=+\left(\frac{W a^{2} b}{l^{2}}+\frac{W a^{2} b}{l^{2}}\right)=\left(\frac{30 \times 2^{2} \times 4}{6^{2}}+\frac{30 \times 4^{2} \times 2}{6^{2}}\right)=40 \mathrm{kNm} \\
& M_{F C D}=\frac{-\omega l^{2}}{12}=-164 \mathrm{kNm} \\
& M_{F D C}=\frac{W l^{2}}{12}=16 \mathrm{kNm}
\end{aligned}
$$

(2) D, F.

Joint	Menbers	K	$\sum K$	$D F=\frac{K}{\Sigma K}$
B	$B A$	$I / L=I / 4=0.25 I$		
	$B C$	$I / L=151 / 65 I$		
	$C-B$	$I / L=\frac{15 I}{6}=0.25 I$	$0.5 I$	0.5
	$C D$	$I / L=I / 4=0.25 \pi$	$0.5 I$	0.5
			0.5	

$$
\begin{aligned}
B M)_{A B} & \left.=\frac{W l^{2}}{8}=B M\right)_{C D} \\
& =\frac{12 \times 4^{2}}{8} \\
& =24 k N-m \\
B M)_{B C} & =\frac{5 l / 3}{3} \\
& =\frac{30 \times 6}{3} \\
& =60 k N-m
\end{aligned}
$$

(i) Analyse the frome

Sifo
(1) REM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W l}{8}=\frac{3 \times 6}{8}=-2.25 \mathrm{kNm} \\
& M_{P B A}=\frac{W l}{8}=2.25 \mathrm{kN-m} \\
& M_{F B C}=\frac{-\omega l^{2}}{12}=\frac{3 \times 6^{2}}{12}=-9 \mathrm{kN-m} \\
& M_{F C B}=\frac{W l^{2}}{12}=9 \mathrm{kN-m} \\
& M_{B D}=+8 \times 2=16 \mathrm{kN-m}
\end{aligned}
$$

(2) D.F.

(3) M.y labse

$$
\begin{aligned}
& B M)_{A B}=\frac{W l}{4}=\frac{3 \times 6}{4}=4.5 \mathrm{kN}=\mathrm{m} \\
& B M)_{B C}=\frac{W l^{2}}{8}=\frac{3 \times 6^{2}}{8}=13.5 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

Solv.
(1) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W a b^{2}}{l^{2}}=-\frac{6 \times 3 \times 1^{2}}{4^{2}}=-1.125 \mathrm{kNm} \\
& M_{F B A}=\frac{W a^{2} b}{l^{2}}=\frac{6 \times 3^{2} \times 1}{4^{2}}=3.375 \mathrm{kN} \mathrm{~mm} \\
& M_{F B C}=-\frac{W l^{2}}{12}=-\frac{20 \times 2^{2}}{12}=-6.67 \mathrm{kmm} \\
& M_{F C B}=\frac{W l^{2}}{12}=\frac{20 \times 2^{2}}{12}=6.67 \mathrm{kN} \mathrm{~km} \\
& M_{F C D}=\frac{-W b^{2}}{1^{2}}=-\frac{6 \times 1 \times 3^{2}}{4^{2}}=-3.375 \mathrm{kmm} \\
& M_{F D C}=\frac{-W a^{2} b}{l^{2}}=-\frac{6 \times 1^{2} \times 3}{4^{2}}=1.125 \mathrm{kNm}
\end{aligned}
$$

(2) D.F.

Joint	Membess	K	$E K$	$D F$
B	$B A$	$\frac{I}{L}=\frac{I}{4}=0.25 I$		0.2
B	$B C$	$\frac{I I}{L}=\frac{2 I}{2}=I$		0.8
C	$C B$	$\frac{2 I}{2}=1.25 I$	0.8	
	$C D$	$\frac{I}{4}=0.25 I$	$1.25 I$	0.2

$$
\begin{aligned}
& B M) A B S C D \\
& =\frac{H a b}{l}=\frac{6 \times 1 \times 3}{4} \\
& =4.5 \mathrm{kN-m} \\
& B M)_{B C} \\
& =\frac{W l^{2}}{8}=\frac{20 \times 2^{2}}{8} \\
& =10 \mathrm{kNCm}^{2}
\end{aligned}
$$

Additional moment due to sway.
(i) If for end is fixed/Continouse. $]$
$m=\frac{-6 E I S}{l^{2}}$.
(ii) If for and is tinged/Roller/SS. Vertical

$$
m=-\frac{3 E I S}{l^{2}}
$$

Final Moments.

$$
\begin{aligned}
& M=\bar{M}+k \cdot M^{\prime} \\
& \bar{M}=\text { Mon-Swry Moments } \quad M^{\prime}=\text { Sway Moments } . \\
& k=\text { correction factor. }
\end{aligned}
$$

Problems.

1) Analyze the frame by M.D.mettod, Draw BMDEEC.

$$
\begin{aligned}
& M_{F A B}=M_{P B A}=0 \\
& M_{F C D}=M_{R D C}=0 . \\
& M_{F B C}=\frac{-W 1^{2}}{12}=-\frac{24 \times 4^{2}}{12}=-32 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=32 \mathrm{kN}
\end{aligned}
$$

(2) D.F.

Joint	Members	K	$\sum k$	$D F$
B	$B A$	$I / 6=0.167 I$	$0.417 I$	0.4
	$B C$	$I / 4=0.25 I$		0.6
C	$C B$	$I / 4=0.25 I$	$0.5 I$	0.5
$C D$	$I / 4=0.25 I$			

(3) Mon-sway Analysix. (M)

Additional moment due to sway.

$$
\begin{gathered}
M=\frac{-6 E I \delta}{l^{2}} \\
M_{A B}=M_{B A}=-\frac{6 E I \delta}{6^{2}}=-\frac{E I \delta}{6} \\
M_{C D}=M_{D C}=\frac{6 E I \delta}{4^{2}}=-\frac{6 E I S}{16} \\
\frac{M_{A B}}{M_{D C}}=\frac{M_{B A}}{M_{C D}}=\frac{1 / 6}{6 / 16}=\frac{1}{6} \times \frac{16}{6}=\left(\frac{4}{9}\right.
\end{gathered}
$$

Assume any suitable values, but according to the above ratio.

$$
\begin{aligned}
& M_{A B}=M_{B A}=4 \mathrm{kN-m} \\
& M_{D C D}=M_{D C}=9 \text { Nom. }
\end{aligned}
$$

The above values are M^{\prime} :

Shear Conolition

(5) Final Momento.

$$
\left.\begin{array}{rl}
M=\bar{M}+k\left(M^{\prime}\right) & \\
M_{A B}=8.6+k(3.59) & M_{C B}=22.45-(4.81) k \\
M_{B A}=17.27+(3.24) K & M_{C D}=-22.45+(4.81) k \\
M_{B C}=-17.27-(3.24) h & M_{D C}=-11.18+(6.88) k
\end{array}\right\}
$$

(6) Calculation of correction factor using shear condifion

$$
\begin{gather*}
\Sigma H=0 \\
H_{A}+H D=100 \tag{1}
\end{gather*}
$$

$\sum M_{B}=0$.

$$
\begin{aligned}
& -H_{A} \times 6+M_{A B}+M_{B A}=0 \\
& 6 H_{A}=8.6+(3.59) k+17.27+(3.24) k \text {. } \\
& 6 H_{A}=25.87+(6.83) K
\end{aligned}
$$

$$
\begin{aligned}
S M_{C} & =0 \\
-H_{D} \times 4 & +M_{C D}+M M_{D C}=0 \\
H_{D} \times 4 & =-22.45+(4.81) k-11.18+(6.88) k \\
4 H_{D} & =-33.63+(11.69) k . \\
H_{D} & =-8.4+(2.92) k
\end{aligned}
$$

(D) \Rightarrow

$$
\begin{gathered}
4.3 i+(1.13) k-8.4+(2.92) k=100 \\
-4.09+(4.05) k=100 \\
(4.05) k=104.09 \\
k=25.70
\end{gathered}
$$

(7) Final Moments.

$$
\begin{aligned}
& M_{A B}=8.6+25.70(3.59)=100.863 \mathrm{kNrm} \\
& M_{B A}=17.27+(3.24) 25.7=100.538 \mathrm{kN-m} \\
& M_{B C}=-17.27+3.24(25.7)=-100.538 \mathrm{kNMm} \\
& M_{C D}=22.45-4.81(25.7)=-101.167 \mathrm{kN-m} \\
& M_{C D}=-22.45+4.81(25.7)=101.167 \mathrm{kN-m} \\
& M_{D C}=-11.18+6.88(25.7)=165.636 \mathrm{kNrm}
\end{aligned}
$$

Ans:-

$$
K=1.022
$$

(2)

draw BMD \& EC.

Sol
(1) FEM

All the FEM are zero.

NUS

Sway.
(3) DF.

Joints	Members	K	$K K$	$D F$
B	$B A$	$2 I / 6=0.33 I$	$0.73 I$	0.45
	$B C$	$2 F / 5=0.4 I$		0.55
	$C B$	$2 I / 5=0.4 I$	$0.65 I$	0.62
	$C D$	$3 / 4(I / 3)=0.25 I$		0.38

(3) Non-sivay Analysis

Since all FEM are zero. Non-sway analysis is mot required. $(\bar{N}=0)$.
(4) Sway Analysis.

$$
\begin{aligned}
M_{A B} & =m_{B A}=\frac{-6 E I \delta}{\ell^{2}} \\
& =-\frac{6 E(2 I) \delta}{6^{2}} \\
& =-\frac{E I f}{3}
\end{aligned}
$$

$$
\begin{aligned}
& M_{C D}=-\frac{3 E I \delta}{l^{2}}=\frac{-3 E I \delta}{3^{2}}=-\frac{E D f}{3} \\
& M_{D C}=0 . \quad(\text { tinged }) . \\
& \frac{M_{A B}}{M_{C D}}=\frac{M_{B A}}{M_{C D}}=\left(\frac{1}{1}\right)
\end{aligned}
$$

\therefore Assume suitable values according to above patio.

$$
\begin{aligned}
& M_{A B}=M_{B A}=5 \mathrm{kN-m} \\
& M_{C D}=5 \mathrm{KN-m} \\
& M_{D C}=0
\end{aligned}
$$

(5) Final Moments.

$$
\begin{aligned}
& M=\bar{M}+K M^{\prime} \\
& M=(\text { Nonsway })+K\left(S_{\text {way }}\right)
\end{aligned}
$$

$$
\sqrt{H} \geq 0
$$

$$
\left.\begin{array}{l}
M_{A B}=4.105(\mathrm{k}) \\
M_{B A}=3.28(\mathrm{k}) \tag{1}\\
M_{B C}=-3.28(\mathrm{k}) \\
M_{C B}=-3.52(\mathrm{k}) \\
M_{C D}=3.52(\mathrm{k}) \\
M_{D C}=0
\end{array}\right\}
$$

(6) Shear Condition

$\Sigma M C=0$.

$$
H D \times 3+M_{C D}=0 .
$$

$$
H_{D}=-\frac{1}{3}[3.52 \mathrm{k}]=-1.17 k
$$

(1) \Rightarrow

$$
\begin{array}{r}
H_{A}+H_{D}=80 \\
-1.23 k-1.17 k=80 \\
k=-33.33
\end{array}
$$

$$
\begin{align*}
& S_{H}=0 \text {. } \quad-H_{A}-H_{D}+80=0 . \\
& H_{A}+H_{B}=80 \text {. } \tag{1}\\
& E M_{B}=0 . \\
& H_{A} \times 6+M_{B A}+M_{A B}=0 \\
& H_{A}=-\frac{1}{t}[(4.105) k+(3.28) k]=-1.23 \mathrm{k}
\end{align*}
$$

(7) Final Moments.

$$
\begin{aligned}
& M_{A B}=4.105(-33.33)=-136.8 \mathrm{kNrm} \\
& M_{B A}=3.28(-33.33)=-109.32 \mathrm{kNim} \\
& M_{B C}=-3.28(-33.33)=109.32 \mathrm{kNim} \\
& M_{C B}=-3.52(-33.33)=117.32 \mathrm{kNm} \\
& M_{C D}=(3.52)-33.33=-117.32 \mathrm{kNrm} \\
& M_{D C}=0
\end{aligned}
$$

 DEPARTMENT OF CIVIL ENGINEERING
 INTERNAL AR온E온GNENT TEST - I
 ACADENIC YEAR 2019 - 2020

Sem/Sec - 5th	Subject code 17CV52/15CV52	Subject name - ANALYSIS OF INDETERMINATE STRUCTURES	Duration - $11 / 2$ hours
Date - 17/10/2019			
Time - 2.00-3.30pm			Max. Marks - 50

Course outcomes

CO2 - Determine the moment in indeterminate beams and frames of no sway and sway using moment distribution method.
CO3 - Construct the bending moment diagram for beams and frames by Kani's method.
Note: i) Answer any one full question from Q. No $1 \& 2$ and any one full question from Q. No 3 \& 4.
ii) All questions carry equal marks

Bloom's Knowledge level
L1-Remember, L2 - Understand, L3 - Apply, L4-Analyze, L5 - Evaluate 8s L6-Create

Syllabus - Module 2 \& 3		Marks	Knowledge Level	COs
Q. No.	Questions			
1	Analyze the continuous beam shown in figure by Moment Distribution method. Draw BMD, SFD and Elastic curve.	25	L2,L4,L5	1
OR				
2	Analyze the continuous beam shown in figure by Moment Distribution method, if support B sinks by 12 mm . Given $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=$ $20 \times 10^{6} \mathrm{~mm}^{4}$ by. Draw BMD, SFD and Elastic curve.	25	L2,L4,L5	1
	Analyze the frame shown in figure by Moment Distribution method. Draw BMD, SFD and Elastic curve.			
3		25	L2,L4,L5	1
OR				
4	Analyze the continuous beam shown in figure by Kani's method. Draw BMD, SFD and Elastic curve.	25.	L2,L4,L5	1

Kana's Method.
Analysis of Structures Without Relative Displacement at ends.

(a) Typical Member.

(b).

Members $A B$ shown in fig (a) is an intermediate member of a beam/frame, which has no relative displacements at the ends (ie ends $A S_{1} B$ are at the same level).

Let $M_{A B} \& M_{B A}$ be the final end moments. MAB may Consists of.
(i) Fixed End Moments $\left(\theta_{A} \& \theta_{B}=0\right)$, fig (b)
(ii) Moment due to rotation of end 'A' only (fig (C))
(iii) Moment due to rotation of end B^{\prime} only (fig (d)).
(1) Rotation Factor.

$$
\begin{aligned}
& \text { Potation Factor }(U)=\frac{-1}{2}\left(\frac{k}{\sum k}\right) \text {. } \\
& \quad(R, F)
\end{aligned}
$$

(2) Rotation Moment.

$$
\begin{aligned}
& M_{a b}^{\prime}=U\left[\Sigma M_{F}+M_{b a}^{\prime}\right] \\
& M_{b a}^{\prime}=U\left[\Sigma M_{F}+M_{a b}^{\prime}\right]
\end{aligned}
$$

(3) Final Moment.

$$
\begin{aligned}
& M_{A B}=M_{F A B}+2 M_{a b}^{\prime}+M_{b a}^{\prime} \\
& M_{B A}=M_{P B A}+2 M_{b a}^{\prime}+M_{a b}^{\prime}
\end{aligned}
$$

(4) Additional Moment.
(a) Due to Sinking, $m=\frac{-6 E I \Delta}{l^{2}}$
(5) Due to Rotation,
(i) Near End, $m=\frac{4 E I \theta}{l .}$
(ii) Far End, $m=\frac{\text { 2EI } \theta}{l .}$

1) Analyse the Continuous Beam Shown in figure by Kanies Method.

Sis
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=-\frac{W l}{8}=-\frac{20 \times 4}{8}=-10 \mathrm{kN-m} \\
& M_{R B A}=+\frac{W l}{8}=10 \mathrm{kW-m} \\
& M_{F B C}=-\frac{\omega l^{2}}{12}-\frac{W a b^{2}}{l^{2}}=\frac{-15 \times 6^{2}}{12}-\frac{30 \times 4 \times 2^{2}}{6^{2}}=-58.33 \mathrm{kN} \mathrm{~m} \\
& M_{F C B}=+\frac{W l^{2}}{12}+\frac{\omega a^{2} b}{l^{2}}=71.67 \mathrm{kN}-\mathrm{m}=\frac{15 \times 6^{2}}{12}+\frac{30 \times 4^{2} \times 2}{6^{2}} \\
& M_{F C D}=\frac{-W l}{8}=-\frac{40 \times 4}{8}=-20 \mathrm{kN-m} \\
& M_{F D C}=+\frac{W l}{8}=20 \mathrm{kN-m}
\end{aligned}
$$

(ii) Rotation factors. $\quad R F=-\frac{1}{2}(k / \Sigma k)$

Joint	Members.	K	$K K$	$R F$
B	$B A$	$\frac{I}{L}=\frac{I}{4}=0.25 I$	$0.58 I$	-0.215
	$B C$	$\frac{I}{L}=\frac{X I}{6}=0.33 I$		-0.284
	$C B$	$\frac{I N}{L}=\frac{2 I}{6}=0.33 I$.	-0.284	
	$C D$	$\frac{I}{2}=\frac{I}{4}=0.25 I$		-0.215.

(iii) Rotation Moment.

$$
M_{B E}^{G}=U\left[M_{F}+M_{G L}^{\prime}\right]
$$

cycle -I.

$$
\begin{aligned}
& M_{b a}^{\prime}=-215[-48.33+0]=10.39 \\
& M_{b c}^{\prime}=-0.284[-48.33+0]=13.72 \\
& M_{c b}^{\prime}=-0.284[51.67+13.72]=-18.57 \\
& M_{c d}^{\prime}=-0.215[51.67+13.72]=-14.05 .
\end{aligned}
$$

cycle - II.

$$
\begin{aligned}
& \frac{c y c l e-I I}{M_{b a}^{\prime}}=-0.215[-48.33-18.57]=14.38 . \\
& M_{b c}^{\prime}=-0.284[-48.33-18.57]=18.99 . \\
& M_{c b}^{\prime}=-0.284[51.67+18.99]=-20.06 . \\
& M_{c d}^{\prime}=-0.215[51.67+18.99]=-15.19
\end{aligned}
$$

cycle III

$$
\begin{aligned}
& y d_{\text {e II }} \\
& M_{b a}^{\prime}=-0.215[-48.33-20.06]=14.70 .{ }^{7} 0 \\
& M_{b c}^{\prime}=-0.284[-48.33-20.06]=19.42 \\
& M_{c b}^{\prime}=-0.284[+51.67+19.42]=-20.18 . \\
& M_{c d}^{\prime}=-0.215[51.67+19.42]=-15.28 .
\end{aligned}
$$

$$
\begin{aligned}
& M_{b a}^{4}=-0.215[-48.33-20.18]=14.72 \\
& M_{b c}^{\prime}=-0.284[548.33-20.18]=19.45 \\
& M_{c b}^{\prime}=-0.284[51.67+19.45]=-20.19 \\
& M_{c d}^{\prime}=-0.215[51.67+19.45]=-15.29
\end{aligned}
$$

(iv) Final Moment.

$$
R_{B}=120-65=55 \mathrm{kN}
$$

$$
\begin{aligned}
& M_{A B}=M_{F}+2 M_{a b}^{\prime}+M_{b a}^{\prime} . \\
& M_{A B}=-10+(2 \times 0)+14.72=4.72 \mathrm{kN-m} \\
& M_{B A}=+10+(2 \times 14.70=39.44 \mathrm{kN-m} \\
& M_{B C}=-58.33+2(19.45)-20.19=-39.62 \mathrm{kNrm} \\
& M_{C B}=71.67+2(-20.19)+19.45=50.74 \mathrm{KN-m} \\
& M_{C D}=-20+2(-15.29)+0=-50.58 \mathrm{kN}-\mathrm{m} \\
& M_{\text {ge }}=20+2(\mathrm{c})-15.29=4.71 \mathrm{kN-m} \\
& B M)_{A B}=\frac{\omega l}{4}=\frac{20 \times 4}{4}=20 \mathrm{kN}=\mathrm{m} \\
& B M)_{C D}=\frac{W \ell}{4}=\frac{40 \times 4}{4}=40 \mathrm{kNH} \\
& B M)_{B C} \\
& \Sigma x=0 \\
& R_{B}+R_{C}=(15 \times 6)+30=120 . \\
& S M_{B}=0 . \\
& -R_{c} \times 6+30 \times 4+15 \times 6 \times \frac{6}{2}=0 . \\
& R_{c}=65 \mathrm{kN} .
\end{aligned}
$$

2) Analyse the C.B shown in figure
by Kami's method.

Seq
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-\omega a b^{2}}{l^{2}}=\frac{-40 \times 3 \times 2^{2}}{5^{2}}=-19.2 \mathrm{kN}-\mathrm{m} \\
& M_{F B A}=\frac{\omega a^{2} b}{l^{2}}=\frac{40 \times 3^{2} \times 2}{5^{2}}=28.8 \mathrm{kN-m} \\
& M_{F B C}=\frac{-\omega l^{2}}{12}=-62.5 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=\frac{+\omega l^{2}}{12}=62.5 \mathrm{kN-m} \\
& M_{F C D}=\frac{-\omega l}{8}=-60 \times 4=-30 \mathrm{kNN} \\
& M_{F D C}=\frac{\omega l}{8}=30 \mathrm{kN-m}
\end{aligned}
$$

(ii) Rotation factor.

Joint	Members	K	$E K$	$R F=\frac{-1}{2}\left(\frac{K}{\Sigma K}\right)$
B	$B A$	$I / L=I / 5=0.2 I$	$0.4 I$	-0.25
	$B C$	$I / L=I / 5=0.2 I$		-0.25
C	$C B$	$I / L=I / 5=0.2 I$	$0.45 I$	-0.22
	$C D$	$I / L=I / 4=0.25 I$		-0.28.

(iii) Rotation Moment.

$$
M_{b c}^{\prime}=U\left[M_{F}+M_{c b}^{\prime}\right]
$$

(iii) Final Moment.

$$
\begin{aligned}
M_{A B} & =M_{F}+2 M_{a b}^{1}+M_{b a}^{\prime} \\
& =-19.2+(2 \times 0)+10.8=-8.4 \mathrm{kN} \mathrm{~m} \\
M_{B A} & =28.8+(2 \times 10.8)+0=50.4 \mathrm{kN-m} \\
M_{B C} & =-62.5+2(10.8)-9.526=-50.42 \mathrm{kN-m} C \\
M_{C B} & =+62.5+(2 \times-9.526)+10.8=54.24 \mathrm{kN-m} \\
M_{C D} & =-30+2(-12.12)+0=-54.24 \mathrm{kN-m} G \\
M_{D C} & =30+(2 \times 0)-12.12=17.88 \mathrm{kN-m} \\
B M)_{A B} & =\frac{W a b}{l}=\frac{40 \times 3 \times 2}{5}=48 \\
B M)_{B C} & =\frac{W l^{2}}{8}=\frac{30 \times 5^{2}}{8}=93.75 \mathrm{kN-m} \\
B M)_{C D} & =\frac{W l}{4}=\frac{60 \times 4}{4}=60 \mathrm{kN-m}
\end{aligned}
$$

3) Analyse the $C B$ shown in figure by kari's method.

Sol:
(i) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W a b^{2}}{d^{2}}=\frac{-40 \times 2 \times 4^{2}}{6^{2}}-\frac{40 \times 4 \times 2^{2}}{6^{2}}=-53.33 \mathrm{kN-m} \\
& M_{F B A}=\frac{W a^{2} b}{l^{2}}=\frac{40 \times 2 \times 4^{2}}{6^{2}}+\frac{40 \times 4 \times 2^{2}}{6^{2}}=53.33 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=\frac{-W l^{2}}{12}-\frac{W a b^{2}}{d^{2}}=\frac{-20 \times 6^{2}}{12}-\frac{50 \times 2 \times 4^{2}}{6^{2}}=-104.4^{4} \mathrm{kNom} \\
& M_{F E B}=+\frac{W l^{2}}{12}+\frac{W a^{2} b}{1^{2}}=82.22 \mathrm{kN-m} \\
& M_{F C D}=\frac{W l}{8}=\frac{-80 \times 4}{8}=-40 k N-m \\
& M_{F D C}=\frac{W l}{8}=40 \mathrm{kal}-m
\end{aligned}
$$

(ii) Rotation factor.

Joint	Members	K	ΣK	$R F=\frac{-1}{2}\left(\frac{K}{\Sigma K}\right)$
B	$B A$	$\frac{3}{4}(I / L)=\frac{3}{4}\left(\frac{1.5 I}{6}\right)=0.1875 I$	$0.5205 I$	-0.18
	$B C$	$I / L=\frac{2 I}{6}=0.333 I$.		-0.32
C	$C B$	$I / L=\frac{2 I}{6}=0.333 I$	$0.583 I$	-0.28
	$C D$	$I / L=I / 4=0.25 I$		-0.22

(ii) Rotation Moment

$$
=M_{b c}^{\prime}=U\left[M_{F}+M_{c b}^{i}\right] .
$$

(i.) Final Momento.

$$
\begin{aligned}
& M_{A B}=M_{F}+2 M_{a b}^{\prime}+M_{b a}^{\prime} \\
& M_{A B}=0 . \\
& M_{B A}=80+2(7 \cdot 16)=94.32 \mathrm{kN}=\mathrm{m} \\
& M_{B C}=-104.4+2(12.73)-138=-94.32 \mathrm{krvom} C_{3} \\
& M_{C B}=82.22+2(-15.38)+12.73=64.20 \text { kNMm }
\end{aligned}
$$

$$
\begin{aligned}
& \left.M_{D C}=40+2(0)+(-12.08)=27-92 \text { (cr-m }\right) . \\
& B M)_{A B}=W \cdot a=40 \times 2=80 \mathrm{kN}-\mathrm{m} \\
& B M)_{C D}=\frac{W l}{4}=\frac{80 \times 4}{4}=80 \mathrm{kN}-\mathrm{m} \\
& B M)_{B C} \Rightarrow \overbrace{R_{B}}^{2020} 420 \\
& \Sigma v=0 \\
& R_{B}+R_{C}=50+(20 \times 6)=170 \\
& \Sigma M_{B}=0 \\
& M)_{E}=(93.33 \times 2)-\left(20 \times 2 \times \frac{2}{2}\right) \\
& =146.66 \mathrm{kr}-\mathrm{m} \\
& 50 \times 2+20 \times 6 \times \frac{6}{2}-R_{C} \times 6=0 \\
& R_{c}=76.67 \mathrm{kN} .
\end{aligned}
$$

Kani's Mettrod.

Sol:
(i) EEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-\omega l}{8}=\frac{-50 \times 4}{8}=-25 \mathrm{kN-m} \\
& M_{F B A}=+\frac{W l}{8}=25 \mathrm{kN} \mathrm{~m} \\
& M_{F B C}=\frac{-\omega l^{2}}{12}=\frac{-20 \times 4^{2}}{12}=-26.67 \mathrm{kNHm} \\
& M_{F C B}=+\frac{\omega l^{2}}{12}=26.67 \mathrm{kN-m} \\
& M_{F C D}=-\frac{W l}{8}=-25 \mathrm{kN-m} \\
& M_{F D C}=\frac{W l}{8}=25 \mathrm{kN}=\mathrm{m}
\end{aligned}
$$

(ii) Retation factors.

(iii) Rotation Moment.

$$
M_{b c}^{\prime}=U\left[\Sigma M_{F}^{*}+\Sigma M_{c b}^{\prime}\right]
$$

(iv) Final Moments.

$$
\begin{gathered}
M_{A B}=M_{F}+2 M_{a b}^{\prime}+M_{b a}^{\prime} \\
M_{A B}=-25+2(0)=-25.38=25+2(\bar{k}=38)+0=24.24 \mathrm{kN-m} \\
M_{B A}=25=-26.67+2(-0.38)+3.21=-24.22 \mathrm{kN-m} \\
M_{B C}=-26.67+2(3.21)-0.38=32.71 \mathrm{kram} \\
M_{C B}=2(2.39)+0=-32.72 \mathrm{kN-m} \\
M_{C D}=-37.5+2(2) \\
M_{D C}=0 .
\end{gathered}
$$

3

$$
B M)_{A B}=\frac{w l}{4}=\frac{50 \times 4}{4}=50 \mathrm{krrm}
$$

$B M)_{B C}=\frac{W l^{2}}{8}=\frac{20 \times 4^{2}}{8}=40 k+m$

$$
B M M)_{C D}=\frac{W l}{4}=\frac{50 \times 4}{4}=50 k N-m
$$

5) Analyse

Rani's Method. The support B sink,
by 10 mm . Take $E I=4000 \mathrm{kN} \mathrm{mm}^{2}$. Draw $B M D \varepsilon_{1}$ elastic curve

Sol

$$
\begin{aligned}
& \text { Additional moment } \\
& \text { due to sinking }
\end{aligned}=-\frac{6 E I \delta}{l^{2}}
$$

(i) FEM.

$$
\begin{aligned}
& \frac{F E M}{M_{A D}}=+20 \times 1=20 \mathrm{kN-m} \quad \text { (Final overhanging moment). } \\
& M_{F A B}=-\frac{\omega l}{8}-\frac{6 E I \delta}{l^{2}}=-\frac{30 \times 4}{8}-\frac{6 \times 4000 \times(+0.01)}{4^{2}} \\
&=-30 \mathrm{kN}-m \\
& M_{F B A}=\frac{\omega l}{8}-\frac{6 E I \delta}{l^{2}}=0 \\
& M_{F B C}=-\frac{\omega l^{2}}{12}-\frac{6 E I \delta}{l^{2}}=\frac{-20 \times 6^{2}}{12}-\frac{6 \times 4000 \times(-0.01) \times 2}{6^{2}} \\
&=-46.67 \frac{K N-m}{} \\
& M_{F C B}= \frac{\omega l^{2}}{12}-\frac{6 E I \delta}{l^{2}}=73.33 \mathrm{kN-m}
\end{aligned}
$$

Joint	Members	K	ΣK	$K F=$ $-1 / 2(K / \Sigma K)$
B	$B A$	$3 / 4(I / L)=0.1875 I$	$0.5205 I$	-0.18
	$B C$	$I / L=\frac{28}{6}=0.333 I$		-0.32

(iii) Rotation Moment.

(iv) Final Moments.

$$
M_{A B}=M_{F}+2\left(M_{a b}^{\prime}\right)+M_{b a}^{\prime}
$$

$$
\begin{aligned}
& M_{A D}=20 \mathrm{kN}-\mathrm{m} \\
& M_{A B}=-20 \mathrm{kN-m} \\
& M_{B A}=5+2(7.5)+0=20 \mathrm{kN-m} \\
& M_{B C}=-46.67+2(13.33)+0=-20 \mathrm{kN-m} \\
& M_{C B}=73.33+(2 \times 0)+13.33=86.66 \mathrm{kN-m} \\
& B M)_{A B}=\frac{4 l}{4}=\frac{30 \times 4}{4}=30 \mathrm{kN-m} \\
& B M)_{B C}=\frac{4 l^{2}}{8}=\frac{20 \times 6^{2}}{8}=90 \mathrm{kN-m}
\end{aligned}
$$

Analysis of Non-Sway frames.

1) Andyse the frame shown in figure by Kanis Macthod.

Sol:- (i) FEM.

$$
\begin{aligned}
& M_{F A B}=M_{F B A}=M_{F C D}=M_{F D C}=0 . \\
& M_{F B C}=-\frac{W l^{2}}{12}=-\frac{20 \times 5^{2}}{12}=-41.67 \mathrm{kNrm} \\
& M_{F C B}=\frac{+W l^{2}}{12}=41.67 \mathrm{kN}-m \\
& M_{F C E}=\frac{-W a b^{2}}{l^{2}}=-2.81 \mathrm{kN-m} \\
& M_{F E C}=\frac{+W a^{2} b}{l^{2}}=0.937 \mathrm{kN-m}
\end{aligned}
$$

(ii) Rotation factors.

(i.) Final roments.

$$
\begin{aligned}
& M_{A B}=0+2(0)+10.95=10.95 \mathrm{kNrm} \\
& M_{B A}=0+2(10.95)+0=219 \mathrm{kN-m} \\
& M_{B C}=-41.67+2(12.85)+(-5.94)=-21.91 \mathrm{kN-m} \\
& M_{C B}=41.67+2(-5.94)+12.85=42.64 \mathrm{kN-m} \\
& M_{C E}=0=0.09-2.81+2(-14.89)+0=-32.59 \mathrm{kN-m} \\
& M_{C D}=0+2(-5.01)+0=-10.2 \mathrm{kN-m} \\
& M_{E C}=0.937+(2 \times 0)-14.89=-13.95 \mathrm{kN-m} \\
& M_{D C}=0+2(0)-5.01=-5.01 \mathrm{kN-m} \\
& B M)_{B C}=\frac{\omega l^{2}}{8}=\frac{20 \times 5}{8}=62.5 \mathrm{kN-m} \\
& B M)_{C E}=\frac{\text { wab }}{l}=\frac{10 \times 0.5 \times 1.5}{2}=3.75 \mathrm{kNm}
\end{aligned}
$$

(2) Hnalyse
by Konis mettred.

Sof
(i) FEM

$$
\begin{aligned}
& M_{F A B}=M_{F B A}=M_{I B C}=M_{F C B}=0 . \\
& M_{F D E}=M_{F E D}=M_{F E F}=M_{F F E}=0 . \\
& M_{F B E}=\frac{-\omega a b^{2}}{l^{2}}=-\left[\frac{30 \times 2 \times 4^{2}}{6^{2}}+\frac{30 \times 4 \times 2^{2}}{6^{2}}\right] \\
&=-40 \mathrm{kW-m} \\
& M_{F E B}=\frac{+W a^{2} b}{l^{2}}=\left[\frac{30 \times 2^{2} \times 4}{6^{2}}+\frac{30 \times 4^{2} \times 2}{6^{2}}\right] \\
&=+40 k W-m \\
& M_{F C D}= \frac{-W l^{2}}{12}=-\frac{30 \times 6^{2}}{12}=-90 \mathrm{kN-m} \\
& M_{F D C}=+W l^{2} / 12=90 \mathrm{kN-m}
\end{aligned}
$$

(ix) Botation voment.

(iv) Final Moments.

$$
\begin{aligned}
& M_{A B}=0+2(0)+2.57=2.57 \mathrm{kN-m} \\
& M_{B A}=0+(2 \times 2.57)+0=5.14 \mathrm{kN-m} \\
& M_{B C}=0+2(2.57)+26.22=31.36 \mathrm{krmm} \\
& M_{B E}=-40+2(1.72)+0=-36.56 \mathrm{kNm} \\
& M_{C B}=0+2(26.22)+2.57=55.01 \mathrm{kN-m} \\
& M_{C D}=-90+2(17.48)+0=-55.04 \mathrm{kN-m} \\
& B M)_{B E}=W \times a=30 \times 2=60 \mathrm{kNm} \\
& B M)_{C D}=\frac{W \mathrm{kN}^{2}}{8}=135 \mathrm{kN-m}
\end{aligned}
$$

(iii) Rotation. Moment.

(3) Axalyse the frome shown in figule

Kani's Method.

SH
(i) FEM

$$
\begin{aligned}
& M_{F B E}=-\frac{w l^{2}}{12}=-\frac{30 \times 4^{2}}{12}=-40 \mathrm{kN}-\mathrm{m} \\
& M_{P E B}=\frac{+w l^{2}}{12}=40 \mathrm{kN}-\mathrm{m} \\
& M_{F C F}=-\frac{\omega a b^{2}}{l^{2}}=-56.25 \mathrm{kN-m} \\
& M_{F F C}=+\frac{\omega a^{2} b^{2}}{l^{2}}=18.75 \mathrm{kN-m}
\end{aligned}
$$

(ii) Rotation factors.

B.

(iv) Minal moments.

$$
\begin{aligned}
& M_{A B}=0+2(0)+4.52=4.52 \mathrm{kN-m} \\
& M_{F C}=18.75+290 \\
& M_{B A}=0+2(4.52)+0=9.04-11- \\
& =31.68+12.93 \\
& M_{E B}=40+2(0) \\
& 44.52 \\
& M_{B C}=0+2(4.52)+12.93=21.97 . \text { XinWm } \\
& =44.52 \text { R-N } \\
& M_{B E}=-40 .+2(4.52)+0.32=-30.96 \mathrm{kNm} \\
& M_{C B}=0+2(12.93)+4.52=30.38 \text { from } \\
& M_{C F}=-56.25+2(12.93)+0=-30.39 \mathrm{kN}-\mathrm{m} \\
& \mathrm{BM})_{\mathrm{LF}}=\frac{\mathrm{Wab}}{l}=\frac{100 \times 1 \times 3}{4}=75 \mathrm{kN} \mathrm{~m} \\
& B M)_{B E}=\frac{W^{2}}{8}=\frac{30 \times 4^{2}}{8}=60 \mathrm{kN-m}
\end{aligned}
$$

Sol) (1) REM.

$$
\begin{aligned}
\frac{\text { REM. }}{M_{F B C}=-\frac{W a b^{2}}{l^{2}}} & =-\left(\frac{40 \times 1.5 \times 4.5^{2}}{6^{2}}+\frac{40 \times 4.5 \times 1.5^{2}}{6^{2}}\right) \\
& =-45 \mathrm{kN-m} . \\
M_{F C B}=+\frac{W a^{2} b}{l^{2}} & =+\left(\frac{40 \times 1.5^{2} \times 4.5}{6^{2}}+\frac{40 \times 4.5^{2} \times 1.5}{6^{2}}\right) \\
& =45 \mathrm{kN-m}
\end{aligned}
$$

(2) R.F.

Joints Membors $\hbar \quad \sum K \quad R F=-1 / 2(\Sigma k)$

(3) R.M.

$$
\begin{aligned}
& M_{A B}=0+2(0)+11.26=11.26 \text { brim } \\
& M_{B A}=0+2(11.26)+0=22.52 \text { brmm } \\
& M_{B C}=-45+2(22.46)+(-22.46)=-22.54 .6 \mathrm{cmm} \\
& M_{C B}=45+2(-22.46)+22.46=22.54 \text { kNm } \\
& M_{C D}=0+2(-11.26)+0=-22.52 \mathrm{kNmm} \\
& M_{D C}=0+2(0)-11.26=-11.26 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{aligned}
& M_{A B}=30.19 \\
& M_{B A}=60.38 \\
& M_{B C}=66.90 \\
& M_{B E}=-127.30 \\
& M_{C D}=84.75 \\
& M_{D D}=-84.76 .
\end{aligned}
$$

Stiffness Matrix Method.
The systematic development of Dlope-deplection method in the matrix form herod has lead to stiffens matrive method. This method is also called as displacement method. Since the basic unknowns are the displacement ot the joints.

Slope deflection Method.

$$
\begin{aligned}
& M_{A B}=\frac{2 E I}{l}\left(2 \theta_{A}+\theta_{B}-\frac{38}{L}\right)+M_{F A B} \\
& M_{B A}=M_{F B A}+\left(\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}-\frac{38}{L}\right)\right.
\end{aligned}
$$

Additional moment due to "Rotation"
C

$$
\begin{array}{ll}
\text { At near end }=\frac{4 E I \theta}{l} & \text { Due to Sinking } \\
\text { At for end }=\frac{2 E I \theta}{L} & m=-\frac{6 E I \Delta}{t^{2}}
\end{array}
$$

Stiffness. Matrix Method.

$$
\begin{aligned}
& {[R][K]=[P]-\left[P_{L}\right]} \\
& \left.[R]=[K]^{-1}\{P]-\left[P_{L}\right]\right\}
\end{aligned}
$$

$$
[R]=[\Delta]
$$

where, $[R]=[\Delta]=$ Redundants (Slope ' θ ' are taken as unknowro).
$[P]=$ loads due to Overhang.
$\left[P_{L}\right]=$ Not moment at redundant points (joints).

Problems.

1) Analyse the beam shown infigure by S.M method, dean BMD is EC.

Set

1) Degree of Redundancy.
support ' B ' is Simply supported (might be tire edferel)
$\therefore O_{B}$ is taken as redundant.
\therefore one degree of redundant beam.
2) FEM.

$$
\begin{aligned}
& M_{F A B}=\frac{-W l^{2}}{12}=-60 \mathrm{kNrm} \\
& M_{F B A}=\frac{W l^{2}}{12}=60 \mathrm{kN-m} \\
& M_{F B C}=-\frac{W l}{8}=-\frac{120 \times 6}{8}=-90 \mathrm{kNNm} \\
& M_{F C B}=\frac{W l}{8}=90 \mathrm{kN-m}
\end{aligned}
$$

\therefore Net moments at, joint ale.
(2 B.

$$
\left[P_{L}\right]=\left[M_{F B A}+M_{F B C}\right]=[60-90]=[-30] .
$$

(3) Stiffness Matrix.

Remove all external loads \& apply [Cloctiwise] unit rotation (1) at B.

$$
2 E I\left(2 O_{B}+\theta\left(\left[\begin{array}{l}
\theta_{A}=0 \\
\theta C=0 \\
\theta \\
\Delta=0 .
\end{array}\right]\right.\right.
$$

$$
[K]=1.33 E I
$$

Using S.M equation
Q

$$
\begin{aligned}
{[R] } & =[K]^{-1}\left\{[P]-\left[P_{L}\right]\right\} . \\
\theta_{B} & =[1.33 E I]^{-1}\{[0-(-30)]\} . \\
& =\frac{1}{1.33 E I}(30) . \\
\theta_{B} & \left.=\frac{22.55}{E I}\right]
\end{aligned}
$$

(4) Final Moments.

$$
\begin{aligned}
M_{A B} & =M_{F A B}+\frac{2 E I}{6}\left(2 \theta_{A}+\theta_{B}-\frac{3 / 8}{t}\right) \\
& =-60+\frac{2 E I}{6}\left(\frac{22.55}{E F}\right) \\
M_{A B} & =-52.48 \mathrm{kN}-m^{\circ} \\
M_{B A} & =60+\frac{2 E I}{6}\left(2 \theta_{B}\right) \\
& =75.03 k_{N}-m_{1} \\
M_{B C} & =-90+\frac{2 E I}{6}\left(2 \theta_{B}\right) \\
& =-75 \frac{k N-m}{2} . \\
M_{C B} & =90+\frac{2 E I}{6}\left(\theta_{B}\right) \\
M_{C B} & =97.51 k_{N}-m .
\end{aligned}
$$

$B M D$.

$E C$.
(2) Analyse le C. is shown in figure,

set'
(i) Degree of Redundancy.

$$
\begin{aligned}
& \theta_{B}=\frac{-11.883}{t 2} \\
& \theta_{C}=-\frac{22+88}{1 .}
\end{aligned}
$$

Support $B \&{ }_{C}^{(2)}$ are roller.
$\therefore \theta_{B} \&_{1} O_{C}$ are redundant.
\therefore The degree of redidant beam.
(2) FEM.

$$
\begin{aligned}
& M_{F A D}=-\frac{60 \times 4^{2}}{12}=-80 \mathrm{kN-m} \\
& M_{F B A}=80 \mathrm{kN-m} \\
& M_{F B C}=-\frac{100 \times 3}{8}=-37.5 \mathrm{kN-m}=
\end{aligned}
$$

O

$$
M_{F C B}=+37.5 \mathrm{kN}-\mathrm{m}
$$

\therefore Net moments at joints ale

$$
\begin{aligned}
\text { Net mint } B=M_{E B A}+M F_{B C} & =80-37.5 \mathrm{k} \\
& =42.5 \mathrm{kN}
\end{aligned}
$$

a. joint $C=M_{F C B}=37.5 \mathrm{kN}-\mathrm{m}$

$$
\therefore\left[P_{L}\right]=\left[\begin{array}{l}
42.5 \\
37.5
\end{array}\right]
$$

* Unit rotation @B.($\left.\theta_{B}=1\right)$

$$
\begin{aligned}
K_{11} & =M_{B A}+M_{B C} . \\
& =\frac{2 E I}{4}\left(2 \theta_{B}\right)+\frac{2 E I}{3}\left(2 \theta_{B}\right) \\
& =E I+1.33 E I . \\
& =2.33 E I .
\end{aligned}
$$

$$
\begin{aligned}
K_{21} & =M_{C B} \\
& =\frac{2 E I}{3}\left(\theta_{B}\right) \\
& =0.66 E I .
\end{aligned}
$$

Unit rotation © C. $\left(\theta_{c}=1\right)$

$$
\begin{aligned}
K_{12} & =M_{B C} \\
& =\frac{2 E I}{3}(\theta C) \\
& =0.66 E I \\
K_{22} & =M C B \\
& =\frac{2 E I}{3}(2 \theta C) \\
& =1.33 E I .
\end{aligned}
$$

Using S.M Equis

$$
\begin{aligned}
& {[R]=[K]^{-1}\left\{[P]-\left[P_{L}\right]\right\}} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=\left[\begin{array}{ll}
2.33 E I & 0.66 E I \\
0.66 E I & 1.33 E I
\end{array}\right]^{-1}\left[\begin{array}{l}
0 .-42.5 \\
0-37.5
\end{array}\right]} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=\frac{1}{E I}\left[\begin{array}{l}
-11.93 \\
-22.2
\end{array}\right]}
\end{aligned}
$$

(4) Final Moments.

$$
\begin{aligned}
M_{A B} & =-80+\frac{2 E I}{4}(-11.93 / E I) \\
& =-85.96 \mathrm{kN}-\mathrm{m} \\
M_{B A} & =80+\frac{2 E I}{4}(2 \times-11.93 / E I) \\
& =68.07 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

0

$$
\begin{aligned}
& =68.07 \mathrm{kN-m} \\
M_{B C} & =-37.5+\frac{2 E I}{93}\left(2 \times-11.93 / E I+\frac{-22.2}{E I}\right) \\
& =-68.2 \mathrm{kN-m} \\
M_{C B} & =+37.5+\frac{2 E I}{3}\left[\frac{-11.93}{E I}+2 \times \frac{-28.2}{E I}\right] \\
& =0 .
\end{aligned}
$$

Inverse of Matrix.

$$
\begin{aligned}
& \text { Inverse of Matrix } \\
& {[K]^{-1}=\frac{1}{(2.33 \times 1.33)-(0.66 \times 0.66)}\left[\begin{array}{cc}
1.33 & -0.66 \\
-0.66 & 2.33
\end{array}\right]=\left[\begin{array}{cc}
0.498 & -0.247 \\
-0.247 & 0.873
\end{array}\right]}
\end{aligned}
$$

(3)

St:-
(i) $D \cdot D \cdot R$.
$O_{B} \& \theta_{C}$. are taken as tedundants.
(2) EEMM

$$
\begin{array}{ll}
M_{F A B}=-96 \mathrm{kN}-\mathrm{m} & M_{R B A}=144 \mathrm{kN}=\mathrm{m} \\
M_{F B C}=-75 \mathrm{kN}-\mathrm{m} & M_{F C B}=75 \mathrm{kN-m} \\
M_{F C D}=-75 \mathrm{kN}-\mathrm{m} & M_{F D C}=75 \mathrm{kN}-\mathrm{m}
\end{array}
$$

\therefore Net moment @ joints are.
(2) $B=144-75=69 \mathrm{kN-m}\left(P_{L_{1}}\right)$
$@ C=75-75=0$ ($P_{L 2}$)

$$
P_{L}=\left[\begin{array}{c}
69 \tag{0}\\
0
\end{array}\right]
$$

(3) Stifness Matrix.

Unit Rotation QB

$$
\begin{aligned}
& k_{11}=\frac{2 E I}{5}\left(2 \theta_{B}\right)+\frac{2 E I}{6}\left(2 \theta_{B}\right)=1467 E I . \\
& k_{21}=\frac{2 E I}{6}\left(\theta_{B}\right)=0.33 E I .
\end{aligned}
$$

$$
\begin{aligned}
& K_{12}=\frac{2 E I}{6}(\theta)=0.33 E I \\
& K_{22}=\frac{2 E I}{6}\left(2 \theta_{c}\right)+\frac{2 E I}{4}\left(2 \theta_{c}\right)=1.67 E I \\
& {[K]=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right]=\left[\begin{array}{ll}
1.467 & 0.33 \\
0.33 & 1.67
\end{array}\right] E I .}
\end{aligned}
$$

Using S.M. Equis

$$
\begin{aligned}
& {[R]=[k]^{-1}\left\{[P]-\left[\rho_{2}\right]\right\} .} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{2}
\end{array}\right]=\left[\begin{array}{ll}
1.467 & 0.33 \\
0.33 & 1.67
\end{array}\right]^{-1}\left[\begin{array}{l}
0-69 \\
0-0
\end{array}\right]}
\end{aligned}
$$

0

$$
\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=\left[\begin{array}{c}
-49.22 / E I \\
9.72 / E I
\end{array}\right]
$$

(4) Final Moments.

$$
\begin{array}{ll}
M_{A B}=-115.71 \mathrm{kN} & M_{B A}=104.58 \mathrm{kNm} \\
M_{B C}=-104.56 \mathrm{kNNm} & M_{C B}=65.15 \mathrm{kNm} \\
M_{C D}=-65.14 \mathrm{kN}-\mathrm{m} & M_{D C}=79.92 \mathrm{kNm}
\end{array}
$$

(4) Analyse the $C \cdot$ is by stifferss

BMD $S E C$.

SI:- (1) D. O.R
The supports B, C, \&D are tinged, roller \& As.inges.
$\therefore \theta_{B}, \theta_{C} \& \theta_{D}$ are redundants.

(2) REM.

$$
\begin{align*}
& M_{F A B}=M_{F B A}=0 . \\
& M_{F B C}=-\frac{W C}{}=-8.33 \mathrm{kN}-\mathrm{m} \\
& M_{F C B}=83.33 \mathrm{kN}-\mathrm{m} \\
& M_{F C D}=-90 \mathrm{kN}=\mathrm{m} \quad M_{F D C}=90 \mathrm{kN}=\mathrm{m} \tag{0}
\end{align*}
$$

Net momunts
(a 'B', $P_{H}=M_{F B A}+M_{F B C}=-83.33 \mathrm{kmmom}$
(a ' ${ }^{C}$ ', $\quad P_{L Q}=M_{F C B}+M_{F C D}=83.33-90=-6.67 \mathrm{kNm}$
(a ' D ' $\quad P_{L_{3}}=M_{R D C}=90 \mathrm{kN}-\mathrm{m}$

$$
\therefore\left[P_{L}\right]=\left[\begin{array}{c}
-83.33 \\
-6.67 \\
90
\end{array}\right]_{0} \quad P=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right] \because \text { No overhang }
$$

* Unit rotation @ B. $\left[O_{B}=1\right)$

$$
\begin{aligned}
K_{11} & =\frac{2 E}{3}\left(2 \theta_{B}\right)+\frac{2 E \int(3 I)}{5}\left(2 \theta_{B}\right) \\
& =5.06 E I \\
K_{21} & =\frac{2 E(3 I)}{5}\left(\theta_{B}\right)=1.2 E I . \\
K_{31} & =0 .
\end{aligned}
$$

* Unit rotation @ $C\left(\theta_{2}=1\right)$

$$
\begin{aligned}
K_{12} & =\frac{2 E(3 I)}{5}\left(\theta_{c}\right)=1.2 E I \\
K_{22} & =\frac{2 E(3 I)}{5}\left(2 \theta_{c}\right)+\frac{2 E(I)}{6}\left(2 \theta_{c}\right) \\
& =3.067 E I . \\
K_{32} & =\frac{2 E(I)\left(\theta_{c}\right)}{6}=0.333 E I .
\end{aligned}
$$

(*) Unit rotation@ D. $\left(\theta_{D}=1\right)$

$$
K_{13}=0
$$

$$
\begin{align*}
& K_{23}=\frac{\alpha E(D 2}{5}(D)=0.333 E 1 . \\
& K_{33}=\frac{2 E(I)}{6}\left(2 \theta_{D}\right)=0.666 E I . \\
& {[K]=\left[\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right]=\left[\begin{array}{ccc}
5.06 & 1.2 & 0 \\
1.2 & 3.06 & 0.333 \\
0 & 0.333 & 0.666
\end{array}\right] E I .} \\
& {[R]=[k]^{-1}\left[P-P_{L}\right]} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{C} \\
\theta_{D}
\end{array}\right]=\left[\begin{array}{ccc}
5.06 & 1.2 & 0 \\
1.2 & 3.06 & 0.333 \\
0 & 0.333 & 0.666
\end{array}\right]^{-1}\left[\begin{array}{c}
0-(-83.33) \\
0-(-6.67) \\
0-(90)
\end{array}\right]} \\
& \theta_{B}=13.56 / E I . \\
& \theta_{C}=12.23 / E I . \tag{0}\\
& O_{D}=-141.25 / E I \text {. }
\end{align*}
$$

(4) Final moments.

$$
\begin{array}{ll}
M_{A B}=18.13 \mathrm{kN=m} & M_{B A}=36.27 \mathrm{kN-m} \\
M_{B C}=-36.08 \mathrm{kN-m} & M_{C B}=128.90 \mathrm{kN-m} \\
M_{C D}=-128.9 \mathrm{kNrm} & M_{D C}=0 .
\end{array}
$$

Sefir
(1) D.O.R.
$\theta_{B} \xi \theta_{c}$ are Redundants.

(2) F.E.M.

$$
\begin{array}{ll}
M_{F A B}=-66.67 \mathrm{kN} & M_{F B A}=+66.67 \mathrm{kN}-\mathrm{m} \\
M_{F B E}=-142.85 \mathrm{kN} & M_{F B}=142.85 \mathrm{kN}-\mathrm{m}
\end{array}
$$

Convert overhang in actual moment.

$$
\therefore M_{c}=20 \times 2=+40 \mathrm{kN-m}
$$

[Clockwise +ve]
0

$$
\therefore \quad P=\left[\begin{array}{c}
0 \\
40
\end{array}\right]
$$

Net noment @ joints
(a B, $M_{F B A}+M_{F B C}=+66.67-85=-76.18 \mathrm{kN} / \mathrm{m}$
(aC, MFCD $=142.85 \mathrm{kN-m}$

$$
\left[P_{L}\right]=\left[\begin{array}{c}
-76.18 \\
142.85
\end{array}\right]
$$

* Unit displacement @B. $\left(O_{B}=1\right)$

$$
\begin{aligned}
& K_{11}=\frac{2 E I}{4}\left(2 \theta_{B}\right)+\frac{2 E I}{7}\left(2 \theta_{B}\right)=1.57 E I \\
& K_{21}=\frac{2 E I}{H}\left(\theta_{B}\right)=0.285 E I
\end{aligned}
$$

(\otimes

$$
\begin{aligned}
& K_{12}=\frac{2 E I}{7}\left(\theta_{C}\right)=0.285 E I \\
& K_{22}=\frac{2 E I}{7}\left(2 \theta_{C}\right)=0.57 E I \\
& {[K]=\left[\begin{array}{ll}
1.57 & 0.285 \\
0.285 & 0.57
\end{array}\right] E I .} \\
& {[R]=[K]^{-1}\left[P-P_{L}\right]} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=E I\left[\begin{array}{cc}
1.57 & 0.285 \\
0.285 & 0.57
\end{array}\right]^{-1}\left[\begin{array}{ll}
0 & -(-76.18) \\
40-(142.85)
\end{array}\right]} \\
& \theta_{B}=89.39 / E I \quad \theta_{C}=-225.13 / E I .
\end{aligned}
$$

(4) Final Moments.

$$
\begin{array}{ll}
M_{A B}=-21.97 \mathrm{kNm} & M_{B A}=156.06 \mathrm{kNm} \\
M_{B B}=-156.09 \mathrm{kNm} & M_{C B}=+401 \mathrm{cN}-\mathrm{m}
\end{array}
$$

6) Analyse the beam Shown by Sill method.

The Support ' B ' $\&$ ' C ' Sinks by 8 mm \& 3 mm . Take $E I=8000 \mathrm{kN}^{2}$.

Sols

Converting overhang into actual moment.

0

$$
\left(\begin{array}{c}
-\mathrm{ve} \\
\rightarrow
\end{array}[P]=\left[\begin{array}{c}
-100 \\
0
\end{array}\right]\right.
$$

a) Degree of Redundancy
' θ_{B} ' $\& \theta_{C}$ are Redundants.
\therefore Two degree of Redundant beam.
b) $E E M^{\prime} s$.

$$
\begin{aligned}
M_{F B C}=\frac{-w l^{2}}{12}-\frac{6 E I \delta}{l^{2}} & =\frac{-30 \times 6^{2}}{12}-\frac{6 \times 8000 \times(-0.005)}{6^{2}} \\
& =-83.33 \mathrm{kN} .
\end{aligned}
$$

$$
\begin{aligned}
& M_{F C B}=\frac{\omega l^{2}}{12}-\frac{6 E I \delta}{l^{2}}=46.67 \mathrm{kN}-m \\
& M_{F C D}=\frac{-\omega a b^{2}}{l^{2}}-\frac{6 E I \delta}{l^{2}}=\frac{-150 \times 2 \times 4^{2}}{6^{2}}-\frac{6(8000)(-0.003)}{6^{2}} \\
&=-129.33 \mathrm{kN}=\mathrm{m} \\
& M_{F D C}=\frac{\omega a^{2} b}{l^{2}}-\frac{6 E I \delta}{l^{2}}=70.67 \mathrm{kN-m} .
\end{aligned}
$$

\therefore Net moments.
at $' B$ ' $\rightarrow M_{\mathrm{BBC}}=-83.33 \mathrm{kN}-\mathrm{m}$
at ' ${ }^{\prime}$ ' $\rightarrow M_{F C B}+M_{F C D}=-32.66 \mathrm{kN}-\mathrm{m}$.

$$
\left[P_{2}\right]=\left[\begin{array}{l}
-83.33 \\
-32.66
\end{array}\right]
$$

(c) Stiffness matrix.

Remove all the exctanal loads $\&$ apply unit rotation at ' B ' $\&$ ' C '.
(2)

$$
\begin{aligned}
& \text { C }
\end{aligned}
$$

$$
\begin{aligned}
& K_{21}=\frac{2 E I}{6}\left(2 \hat{\theta}_{c}^{\circ}+\theta_{B} \frac{-\hat{\beta}^{0} \delta}{\hat{e}}\right)=2666.67
\end{aligned}
$$

$$
\begin{aligned}
& K_{12}=\frac{2 E I}{6}\left(2 \hat{\phi}_{B}^{0}+\theta_{C}-\frac{\hat{\beta}_{i}^{\circ} \delta}{\beta_{l}}\right)=2666.67 \\
& k_{22}=\frac{2 E I}{6}\left(2 \theta_{c}+\hat{\phi}_{B}^{0}-\frac{\hat{\beta}_{e} \delta}{\omega}\right) \neq 2 E I\left(2 \theta_{c}+\hat{\phi}_{p}^{0}-\frac{3 \hat{\delta}}{6}\right) \\
& K_{22}=10666.66 \\
& {[K]=\left[\begin{array}{ll}
5.333 .33 & 2666.67 \\
2666.67 & 10666.67
\end{array}\right]} \\
& 0 \quad[R]=[k]^{-1}\left\{[P]-\left[P_{L}\right]\right\} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{c}
\end{array}\right]=\left[\begin{array}{ll}
5333.33 & 2666.67 \\
2666.67 & 10666.67
\end{array}\right]^{-1}\left\{\left[\begin{array}{c}
-100 \\
0
\end{array}\right]-\left[\begin{array}{c}
-83.33 \\
-32.66
\end{array}\right]\right\}} \\
& {\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=\left[\begin{array}{l}
-5.322 \times 10^{-3} \\
4.392 \times 10^{-3}
\end{array}\right]}
\end{aligned}
$$

Final moments.

$$
\begin{array}{ll}
M_{B C}=-100 \mathrm{kN}-\mathrm{m}, & M_{C B}=105.9 \mathrm{kN}-\mathrm{m} . \\
M_{C D}=-105.9 \mathrm{kN}-\mathrm{m}, & M_{D C}=82.38 \mathrm{kN}-\mathrm{m} .
\end{array}
$$

Analysis of Non-Sway Frames.
(1) Analyse the frome shown in figure.

Sif
(Q) $\frac{D \cdot Q \cdot R}{\theta_{B}, \theta_{c}}$ are Redundants (S.S)
$\therefore 2$ degree of redundent frame
(b) F.E.M.

$$
\begin{aligned}
& M_{F A B}=-\frac{W a b^{2}}{l^{2}}=72 \mathrm{kN-m} \\
& M_{F B A}=\frac{-W a^{2} b}{l^{2}}=\frac{W}{12}=-22.5 \mathrm{kN}-\mathrm{m} \\
& M_{F B C}=\frac{W l^{2}}{} \\
& M_{F C B}=\frac{W l^{2}}{12}=22.5 \mathrm{kN}-\mathrm{m} \\
& M_{F Q D}=M_{F D R}=0
\end{aligned}
$$

$$
\begin{aligned}
& C^{\prime}{ }^{\prime}{ }^{\prime}=\frac{48}{}=22.5=25.5 \mathrm{kNm} \\
& \text { @ ' } c^{\prime} \text {, }=22.5 \mathrm{kr}-\mathrm{m} \\
& P_{L}=\left[\begin{array}{l}
25.5 \\
22.5
\end{array}\right] \\
& P=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { (} \because \text { No overtang). }
\end{aligned}
$$

(3) S.M.

* Unit displament @ B.

0

$$
\begin{aligned}
& k_{11}=\frac{2 E(2 I)}{5}\left(2 \theta_{B}\right)+\frac{2 E I}{3}\left(2 \theta_{B}\right)+\frac{2 E I}{3}\left(2 \theta_{B}\right) \\
& k_{11}=4.267 E I . \\
& k_{21}=\frac{2 E I}{3}\left(\theta_{B}\right)=0.667 E I .
\end{aligned}
$$

Problem-2

$$
\begin{aligned}
& K_{12}=\frac{2 E I}{3}\left(\theta_{c}\right)=0.667 E I \\
& k_{22}=\frac{2 E I}{3}\left(2 \theta_{c}\right)=1.33 E I \\
& {[K]=\left[\begin{array}{ll}
4.267 & 0.667 \\
0.667 & 1.333
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
{[R]=[k]^{-1}\left[P-P_{L}\right]} \\
{\left[\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right]=\left[\begin{array}{ll}
4.267 & 0.667 \\
0.667 & 1.333
\end{array}\right]^{-1}\left[\begin{array}{l}
0-25.5 \\
0-22.5
\end{array}\right]} \\
\theta_{B}=-3.62 / E \pm . \\
\theta_{C}=-15.06 / E I
\end{array}\right]
$$

(4) Find proments.

$$
M_{A B}=-74.88 \mathrm{kNrm}
$$

$$
m_{B A}=42: 23 \mathrm{kN-in}
$$

$$
M_{B C}=-37.37 \mathrm{krom}
$$

$$
m_{C B}=-0
$$

$$
M_{B D}=-4.81 \mathrm{kNOM}
$$

$$
M_{D B}=-2.402 \mathrm{kNrm}
$$

